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Abstract. We formulate mathematical equations describing the thermo-

hydrodynamics of the ocean, and introduce certain numerical methods em-

ployed by models used in ocean simulations.
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In preparation for the AGU Monograph “Eddy resolving ocean models.” Draft April

23, 2007

1. Introduction

The purpose of this chapter is to formulate the equations of ocean models and to outline

solution methods. Global ocean climate models, including those representing mesoscale

eddies, are traditionally based on the hydrostatic primitive equations. We nonetheless

discuss extensions to the more fundamental non-hydrostatic equations, which are used in

certain fine resolution process studies, such as for convection and mixing, and increasingly

for coastal and regional modeling. The target audience for this chapter includes students

and researchers interested in fundamental physical and numerical aspects of ocean models.

We thus aim to present a reasonably concise yet thorough accounting of the rationalization

required to pose the problem of ocean modeling. We aim for pedagogy in style by taking

a first principles perspective in hopes of allowing readers with little background in ocean

fluid mechanics to follow the full development. This goal necessitates starting from the

basics as we develop the model equations and methods. For this purpose, much material

was culled from various research papers and textbooks, such as Gill [1982]; Pedlosky

[1987]; Marshall et al. [1997]; Haidvogel and Beckmann [1999]; Grif f ies et al. [2000a];

Grif f ies [2004, 2005]; Vallis [2006].

Our presentation focuses on developing the fluid mechanics of the ocean, and weaves into

this discussion elements appropriate for the formulation of ocean models. We begin with

a discussion of ocean fluid kinematics in Section 2, where we introduce mass conservation

as well as the notions of dia-surface transport. Section 3 then focuses on tracer budgets,
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which follow quite naturally from mass budgets, only with the introduction of possible

nontrivial fluxes of tracer which occur in the absence of mass fluxes. Section 4 introduces

a dynamical description that arises from the use of Newton’s Second Law of Motion ap-

plied to continuous fluid parcels. Section 5 presents the equation of state for density, and

discusses the material evolution of density. Section 6 derives some energetic properties

of the equations of motion, with energetics providing a guiding principle for developing

certain numerical solution methods. Section 7 introduces notions of non-equilibrium ther-

modynamics, a subject which forms the basis for establishing budgets of heat within the

ocean. Section 8 linearizes the dynamical equations to deduce various linear modes of

motion fundamental to ocean dynamics. These motions also have direct relevance to the

development of methods used to solve the ocean equations. They furthermore motivate

certain approximations or filters used to simplify the supported dynamical modes, with

certain approximations described in Section 9. Section 10 presents an overview of vertical

coordinates. The choice of vertical coordinate is fundamental to the numerical algorithms

of an ocean model. Section 11 then presents a general discussion of solution methods used

for numerical models of the ocean. Section 12 closes this chapter with a brief summary

and discussion of certain features of ocean modeling which present a barrier between what

is desired theoretically and what is realizable in practice.

2. Kinematics

Kinematics is the study of intrinsic properties of motion, without concern for dynamical

laws. Fluid kinematics is concerned with establishing constraints on fluid motion due to

interactions with geometrical boundaries of the domain, such as the land-sea, ice-sea, and

air-sea boundaries of an ocean basin. A fundamental element of kinematics is the set of
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coordinates used to describe motion. For fluid motion, such leads to notions of generalized

vertical coordinates, which are a critical element in theoretical and numerical models of

the ocean. Although not strictly a kinematic issue, fluid kinematics concerns itself with

establishing the balances of mass for infinitesimal fluid parcels, as well as for finite regions.

It is convenient, and conventional, to formulate the mechanics of a continous fluid by

focusing on infinitesimal mass conserving parcels [e.g., Batchelor , 1967]. Choosing to do

so allows many notions from classical particle mechanics to transfer over to continuum

mechanics of fluids, especially when describing fluid motion from a Lagrangian perspective.

Mass conservation is also a fundamental property of the ocean, with the mass of the ocean

changing only through boundary input and no interior mass sources.

2.1. Parcel kinematics

Consider an infinitesimal parcel of seawater contained in a volume dV = dx dy dz with

a mass dM = ρ dV , where ρ is the in situ mass density of the parcel and x = (x, y, z) is

the Cartesian coordinate of the parcel with respect to an arbitrary origin. Conservation

of mass for this parcel implies that dM is materially constant; i.e., d/dt (dM) = 0. For

convenience, we write mass conservation as

d

dt
ln (dM) = 0. (1)

Mass conservation is realized as the parcel volume and density change in complementary

manners, where the volume of a fluid parcel changes according to the divergence of the

velocity field

d

dt
ln (dV ) = ∇ · v, (2)
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and the density changes according to the convergence

d

dt
(ln ρ) = −∇ · v. (3)

Hence, parcel volume increases when moving through a diverging velocity field, while the

density decreases.

The mass budget (1)-(3) describes fluid motion from the perspective of a moving fluid

parcel. This perspective affords us with a Lagrangian description of fluid motion. The

complementary Eulerian perspective measures fluid properties from a fixed space frame.

Time tendencies in the two reference frames are related by the coordinate transformation

d

dt
= ∂t + v · ∇, (4)

where ∂t measures Eulerian time tendencies from a fixed space point. The advection term

v · ∇ reveals the fundamentally nonlinear character of fluid dynamics, with the parcel’s

velocity v = dx/dt measuring the time changes of its position.1 Use of relation (4) converts

the Lagrangian statement of mass conservation (1) to the Eulerian form

ρ,t + ∇ · (ρv) = 0. (5)

This equation is termed the mass continuity equation. Note that we introduced a comma

as shorthand for the partial time derivative taken at a fixed point in space

ρ,t = ∂ρ/∂t. (6)

We use an analogous notation for other partial derivatives.2 A useful relation used through-

out this chapter follows by combining the material time derivative (4) with mass continuity

(5) is

ρ
d Ψ

dt
= (ρΨ),t + ∇ · (ρv Ψ), (7)
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where Ψ is any scalar field.

It is common in fluid mechanics to move between the Lagrangian and Eulerian descrip-

tions, as they offer useful complementary insights. Certain ocean models likewise exploit

the advantages of these two descriptions. For example, the vertical coordinate in isopycnal

models moves with the motions of an adiabatic fluid parcel. It is therefore a Lagrangian

vertical coordinate. In contrast, geopotential vertical coordinate models retain a fixed

vertical position as determined by the static depth of a grid cell, and so this is an Eu-

lerian vertical coordinate. Horizontal coordinates in most ocean models remain fixed in

space, and so are Eulerian.

2.2. Dia-surface transport

In providing a mechanistic description of ocean budgets, it is often useful to measure

the material or momentum transfer through a surface. Such represents the dia-surface

transport. We are particularly interested in three surfaces, with the following general

discussion relevant for each.

The first surface is the ocean free surface. Here, water and tracer penetrate this surface

through precipitation, evaporation, river runoff (when applied as an upper ocean boundary

condition), and sea ice melt. Momentum exchange arises from stresses between the ocean

and atmosphere or ice. The ocean free surface can be represented mathematically by the

identity z − η(x, y, t) = 0. For mathematical expediency, we assume the surface height η

is smooth and contains no overturns at the scales of interest. That is, we assume breaking

surface waves are filtered or averaged.

Next, we may describe the solid Earth lower boundary mathematically via the time

independent expression z + H(x, y) = 0. It is typically assumed that there is no fluid
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mass transport through the solid Earth. However, in the case of geothermal heating, we

may consider an exchange of heat between the ocean and the solid Earth. Momentum

exchange through the action of stresses occur between the solid Earth and ocean fluid.

Finally, within the ocean interior, transport across surfaces of constant generalized ver-

tical coordinate s = s(x, y, z, t) constitutes the dia-surface transport affecting budgets of

mass, tracer, and momentum within layers bounded by two generalized vertical coordi-

nate surfaces. A canonical example is provided by isopycnal layers formed by surfaces

of constant potential density, as used in isopycnal ocean models as well as theoretical

descriptions of adiabatic ocean dynamics. A surface of constant generalized vertical co-

ordinate can be successfully used to partition the vertical so long as the transformation

between the generalized vertical coordinate and the geopotential is invertible. The Jaco-

bian of transformation is given by z,s, which must then be single signed for useful vertical

coordinates. This constraint means that we do not allow the surfaces to overturn, which is

the same assumption made about the ocean surface z = η(x, y, t). This restriction places

a limitation on the ability of isopycnal models to describe non-hydrostatic processes, such

as overturning, common in Kelvin-Helmholz billows or vertical convection. We refer to

the Jacobian z,s as the specific thickness, with this name motivated by noting that the

vertical thickness of a layer of coordinate thickness ds is given by dz = z,s ds.

To develop the mathematical description of dia-surface fluid transport, we note that at

an arbitrary point on a surface of constant generalized vertical coordinate (see Figure 1),

the rate at which fluid moves in the direction normal to the surface is given by

rate of flow in direction n̂ = v · n̂. (8)
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In this equation, n̂ = ∇s |∇s|−1 is the surface unit normal direction. If we are working with

the free surface, then the unit normal takes the form n̂ = ∇ (z − η)/|∇ (z − η)|, whereas

at the solid Earth bottom, n̂ = −∇ (z + H)/|∇ (z + H)|. Introducing the material time

derivative ds/dt = s,t + v · ∇s to equation (8) leads to the equivalent expression

v · n̂ = |∇s|−1 (d/dt− ∂t) s. (9)

That is, the normal component to a fluid parcel’s velocity is proportional to the difference

between the material time derivative of the surface and its partial time derivative.

Since the surface is generally moving (except the solid Earth lower boundary), the net

flux of seawater penetrating the surface is obtained by subtracting the velocity of the

surface v(ref) in the n̂ direction from the velocity component v · n̂ of the fluid parcels

rate of relative normal flow across surface =

n̂ · (v − v(ref)). (10)

The velocity v(ref) = u(ref) + w(ref) ẑ is that of a reference point fixed on the surface.

Correspondingly, the material time derivative of the surface, taken with respect to the

reference velocity, vanishes: d(ref) s/dt = 0. This result allows us to write the reference

vertical velocity component w(ref) = dz(ref)/dt as w(ref) = −z,s (∂t + u(ref) · ∇z) s, thus

rendering

n̂ · v(ref) = −s,t |∇s|−1. (11)

Hence, the normal component of the surface’s velocity vanishes when the surface is static,

as may be expected. When interpreting the dia-surface velocity component below, we find

it useful to note that relation (11) leads to

z,s ∇s · v(ref) = z,t. (12)
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To reach this result, we used the identity s,t z,s = −z,t, with z,t the time tendency for the

depth of a particular constant s surface.

Using expression (11) in equation (10) for the net flux of seawater crossing the surface,

leads to

n̂ · (v − v(ref)) = |∇s|−1 ds/dt. (13)

The material time derivative of the generalized surface thus vanishes if and only if no

water parcels cross it. This is a very important result that is used throughout ocean

theory and modeling. It provides an expression for the volume of seawater crossing a

generalized surface, per time, per area. The area normalizing the volume flux is that area

dA(n̂) of an infinitesimal patch on the surface of constant generalized vertical coordinate

with outward unit normal n̂. This area can generally be written dA(n̂) = |z,s ∇s| dA,

where dA = dx dy is the area of the surface projected onto the horizontal plane formed

by surfaces of constant depth. Hence, the volume per time of fluid passing through

the generalized surface n̂ · (v − v(ref)) dA(n̂) is equivalent to |z,s| (ds/dt) dA. This result

motivates us to introduce the dia-surface velocity component

w(s) = z,s
ds

dt
, (14)

which measures the volume of fluid passing through the surface, per unit horizontal area,

per unit time. That is,

w(s) ≡ n̂ · (v − v(ref)) dA(n̂)

dA
(15)

=
(volume/time) fluid through surface

horizontal area of surface
. (16)
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The dia-surface velocity component can be written in the following equivalent forms

w(s) = z,s ds/dt (17)

= z,s ∇s · (v − v(ref)) (18)

= (ẑ −∇sz) · v − z,t (19)

= w − (∂t + u · ∇s) z (20)

where ∇sz = −z,s ∇zs is the slope of the s surface projected onto the horizontal directions,

and the penultimate step follows from the identity (12). When the surface is static, then

the dia-surface velocity component reduces to w(s) = w−u·∇sz. If the surface is flat, then

the dia-surface velocity component measures the flux of fluid moving vertically relative

to the motion of the generalized surface. Finally, if the surface is flat and static, the

dia-surface velocity component becomes the vertical velocity component w = dz/dt used

in geopotential coordinate models.

The expression (14) for w(s) brings the material time derivative (4) into the following

equivalent forms

d

dt
=

(
∂

∂t

)

z

+ u · ∇z + w

(
∂

∂z

)

(21)

=

(
∂

∂t

)

s

+ u · ∇s +
ds

dt

(
∂

∂s

)

(22)

=

(
∂

∂t

)

s

+ u · ∇s + w(s)

(
∂

∂z

)

, (23)

where ∂s = z,s ∂z relates the vertical coordinate partial derivatives. Note the subscripts

in these expressions denote variables held fixed for the partial derivatives. We highlight

the special case of no fluid parcels crossing the generalized surface. This occurs in the

case of adiabatic flows with s = ρ an isopycnal coordinate. In this case, the material time

derivative (23) only has a horizontal two-dimensional advective component u · ∇ρ. This
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result should not be interpreted to mean that the velocity of a fluid parcel in an adiabatic

flow is strictly horizontal. Indeed, it generally is not, as the form (21) makes clear. Rather,

it means that the advective transport of fluid properties occurs along surfaces of constant

ρ, and such transport is measured by the convergence of horizontal advective fluxes as

measured along surfaces of constant ρ.

2.3. Kinematic boundary conditions

The discussion so far of dia-surface transport focused on a surface of constant generalized

vertical coordinate within the ocean interior. These results can also be applied to the ocean

free surface (Figure 2) and solid Earth lower boundary to derive kinematic boundary

conditions. For the lower boundary, again assuming no material transport through the

boundary, we have the trivial result

w(s) = 0 at s = sbot, (24)

which is equivalent to the no normal flow boundary condition v · n̂ = 0.

At the ocean surface, mass transport arises from the passage of water across the pene-

trable free surface. We define this transport in the following manner

(mass/time) through surface = Qη
w dAη, (25)

with Qη
w the mass flux through the ocean surface, normalized by the area element dAη on

the surface. We next exploit the assumption that the surface interface of ocean models

has no overturns, in which case we can introduce the horizontal area dA to rewrite the

mass flux as

(mass/time) through surface ≡ Qw dA. (26)
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Qw is the mass flux used in ocean models, with some models defining

Qw = ρw qw (27)

where ρw is the density of the water crossing the ocean surface, and qw is the fresh water

flux (with units of velocity).3

To develop the surface kinematic boundary condition (Figure 2), we note that the free

surface, defined at z − η(x, y, t) = 0, materially evolves according to the flux of mass

crossing it, so that

ρ

(
d(z − η)

dt

)

= −ρw qw at z = η. (28)

The identity dz/dt = z,s ds/dt leads to the kinematic boundary condition in generalized

vertical coordinates

ρ z,s

(
d(s− stop)

dt

)

= −ρw qw at s = stop, (29)

where stop = s(x, y, z = η, t) is the value of the generalized vertical coordinate at the

ocean surface.

These material statements of the kinematic boundary condition can also be derived

by considering the mass budget over either an infinitesimal region near the upper ocean

surface, or the budget over a full column of water extending from a static ocean bottom

at z = −H(x, y) to a dynamic ocean surface at z = η(x, y, t). We present the column

mass budget approach, as it has application for later considerations. The total mass per

horizontal area of fluid inside the column is given by the integral
∫ η

−H
ρ dz. Conservation

of mass for this column implies that mass changes in time through imbalances in fluxes

crossing the ocean free surface, and convergence of advective mass transport through the
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vertical sides of the column.4 These considerations lead to the balance

∂t





η∫

−H

dz ρ



 + ∇ · Uρ = qw ρw, (30)

where

Uρ =

∫ η

−H

dz ρu (31)

is a shorthand notation for the vertically integrated horizontal momentum per volume.

Now to derive the surface kinematic boundary condition, perform the derivative operations

on the integrals in the mass budget (30), use the no flux lower boundary condition, and

use the Eulerian mass conservation relation (5), to render

ρ (∂t + u · ∇) η = ρw qw + ρw at z = η. (32)

This is an Eulerian version of the material kinematic boundary condition (28).

3. Tracer budget

The tracer concentration C is defined to be the mass of tracer per mass of seawater

for material tracers such as salt or biogeochemical tracers. Hence, the total tracer mass

within a finite region of seawater is given by the integral
∫
C ρ dV . The material evolution

of tracer mass within a Lagrangian parcel of mass conserving fluid is given by

ρ
dC

dt
= −∇ · J + ρS, (33)

where S is a tracer source that cannot be written as the convergence of a flux. There

are many biogeochemical tracers which have a nontrivial S. The tracer flux J arises from

subgrid scale (SGS) transport of tracer occurring in the absence of mass transport. Such

transport consists of SGS diffusion and advection. Use of the identity (7) allows us to
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bring the Lagrangian parcel tracer budget (33) into the following Eulerian flux form

(ρC),t + ∇ · (ρvC + ρF) = ρS, (34)

where J = ρF introduces the tracer concentration flux F, with dimensions velocity ×

tracer concentration.

Since the tracer flux J and tracer source S are not associated with mass transport or

mass sources, they both vanish when the tracer concentration is uniform, in which case

the tracer budget (34) reduces to the mass budget (5). This compatibility relation between

mass and tracer budgets follows trivially from the definition of tracer concentration. It

forms an important guiding principle that a numerical algorithm must maintain in order

for the simulation to conserve tracer. Not all ocean models satisfy this constraint, in

which case they suffer from local or global tracer non-conservation [Grif f ies et al., 2001;

Campin et al., 2004; White et al., 2007].

In a manner analogous to the definition of a dia-surface velocity component in Section

2.2, it is useful to identify the amount of tracer transported through a surface from the

effects of SGS processes

(SGS tracer mass through surface)

time
= dA(n̂) n̂ · J. (35)

For this purpose, we are led to introduce the dia-surface SGS tracer flux

J (s) ≡ dA(n̂) n̂ · J
dA

(36)

= z,s ∇s · J (37)

= (ẑ −∇sz) · J, (38)

where ∇sz is the slope vector for the generalized surface introduced following equation

(20). In words, J (s) is the tracer mass per time per horizontal area penetrating surfaces
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of constant generalized vertical coordinate via processes that are unresolved by the dia-

surface velocity component w(s). At the ocean boundaries, J (s) embodies the transport of

tracer into the ocean from other components of the climate system.

4. Linear momentum budget

The linear momentum of a fluid parcel is given by v ρ dV . Through Newton’s Second

Law of Motion, momentum changes in time due to the influence of forces acting on the

parcel. There are two external (or body) forces and two internal (or contact) forces acting

on a fluid parcel that concern ocean modelers. Body forces act throughout the fluid media,

with gravitational and Coriolis forces of concern. Contact forces act on the volume of a

continuous media by acting on the boundaries of the media, with pressure and friction

the two contact forces of concern. Through the Green-Gauss theorem of vector calculus,

the contact forces are transformed into body forces, which provides a means to formulate

the equations of motion for an infinitesimal fluid parcel.

4.1. Gravitational force and spherical geometry

The effective gravitational force is noncentral due to the Earth’s rotation, and due to

inhomogeneities in the Earth’s mass distribution. Hence, if the Earth were an ideal fluid,

matter would flow from the poles toward the equator, thus ensuring that the Earth’s

surface would everywhere be perpendicular to the effective gravitational acceleration, g.

Indeed, the Earth does exhibit a slight equatorial bulge. However, inhomogeneities in the

Earth’s composition and surface loading by continents, glaciers, and seawater make its

shape differ from the ideal case. For purposes of global ocean modeling, we ignore the

inhomogeneities, but we do not ignore the equatorial bulge.
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Veronis [1973], Phillips [1973], and Gill [1982] discuss how the Earth’s geometry can

be well approximated by an oblate spheroid, with the equatorial radius larger than the

polar due to centrifugal effects. With this geometry, surfaces of constant geopotential

are represented by surfaces with a constant oblate spheroid radial coordinate [page 662

of Morse and Feshbach, 1953]. However, the oblate spheroidal metric functions, which

determine how to measure distances between points on the spheroid, are less convenient

to use than the more familiar spherical metric functions. To provide a simpler form of

the equations of motion on the Earth, Veronis [1973] and Gill [1982] (see in particular

page 91 of Gill) indicate that it is possible, within a high level of accuracy, to maintain

the best of both situations. That is, the surfaces of constant “radius” r are interpreted as

best fit oblate spheroidal geopotentials, yet the metric functions used to measure distance

between points in the surface are approximated as spherical. As the metric functions

determine the geometry of the surface, and hence the form of the equations of motion, the

equations are exactly those which result when using spherical coordinates on a sphere.

Hence, throughout this chapter, the geometry of the Earth is spherical, yet the radial

position r represents a surface of constant geopotential, which is approximated by an

oblated spheroid.

In summary, the gravitational field most convenient for ocean modeling is an effective

gravitational field, which incorporates the effects from the centrifugal force. The effective

gravitational field is conservative, so that the gravitational acceleration of a fluid parcel

can be represented as the gradient of a scalar,

g = −∇Φ, (39)
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with Φ the geopotential. As (ρ dV ) Φ is the gravitational potential energy of a parcel, Φ

is also the gravitational potential energy per mass. In most ocean modeling applications,

the local vertical direction is denoted by z, with z = 0 the surface of a resting ocean, in

which case

Φ ≈ g z, (40)

with g ≈ 9.8m s−2 the acceleration due to gravity, which is generally assumed constant

for ocean climate modeling. This assumption is not fundamental and can be readily

jettisoned, as indeed is important for accurate ocean tide calculations.

4.2. Coriolis force

Ocean models generally are written in the referene frame of an observer at a fixed lateral

position on the rotating Earth. This moving reference frame then leads to a Coriolis force

per mass, which is written

Fc = −2Ω ∧ v. (41)

The Earth’s rotational vector Ω points outward through the north pole, with the Earth’s

rotation counter-clockwise if looking down onto the north pole.

The Earth’s angular velocity is comprised of two main contributions: the spin of the

Earth about its axis and the orbit of the Earth about the Sun. Other astronomical

motions can be neglected for ocean modeling. Therefore, in the course of a single period

of 24 hours, or 24 × 3600 = 86400 seconds, the Earth experiences an angular rotation of

(2π + 2π/365.24) radians. As such, the angular velocity of the Earth is approximately
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given by

Ω =

(
2π + 2π/365.24

86400s

)

=
( π

43082

)

s−1

= 7.2921 × 10−5s−1.

(42)

To an extremely high degree of accuracy, this angular velocity is assumed constant in time

for purposes of ocean modeling.

4.3. Stresses from pressure and friction

When parcels exchange momentum with other parcels and/or boundaries, this exchange

can be represented via the components of a symmetric stress tensor, whose elements have

units of a force per area. There are two types of stress of concern for ocean fluid dynamics:

diagonal stresses associated with pressure p, and stresses associated with friction organized

into the components of a symmetric and trace-free frictional stress tensor τ . The frictional

stress tensor is also known as the deviatoric stress tensor [e.g., Aris, 1962; Batchelor , 1967],

as it represents deviations from the static case when stress is due solely to pressure.

The contact force from friction and pressure acting on the boundaries of a fluid region

can generally be written

Fstress =

∫

(τ · n̂ − p n̂) dA(n̂). (43)

The surface integral is taken over the bounding surface of the domain whose outward

normal is n̂. Pressure acts in the direction opposite to the surface’s outward normal,

and so always acts in a compressive manner (Figure 3). Deviatoric stresses create more

general forces on the surface, which can have compressive, expansive, and/or shearing

characteristics. It is notable that the mechanical pressure considered here is the same
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as the pressure used for equilibrium and non-equlibrium thermodynamical considerations

(Section 7).

The Green-Gauss theorem of vector calculus can be used to convert the area integral in

equation (43) to a volume integral, so that

Fstress =

∫

∇ · (τ − I p) dV, (44)

where I is the identity tensor. This is a fundamental result of practical relevance in the

formulation of pressure forces in ocean models. That is, one may choose to formulate

the pressure force as the gradient of pressure integrated over the volume of the cell, as in

equation (44), or as the accumulation of pressure forces acting on the boundary of the cell,

as in equation (43). Both formulations are equivalent in the continuum. However, certain

discrete formulations break the symmetry. For example, the finite difference approach

of Bryan [1969a] uses an energetically consistent formulation of the pressure gradient,

yet this method is not equivalent to a contact force formulation. In contrast, Lin [1997]

proposes to use a finite volume formulation [e.g., chapter 6 of Hirsch, 1988], in which

the contact force formulation (written as a closed contour integral), is constructed to be

equivalent to a finite volume formulation of the pressure gradient.

The frictional stresses in a fluid arise from strains acting in the horizontal and vertical

directions which, through the assumptions of a Newtonian fluid, are directly proportional

to stress. The proportionality is in the form of a viscous tensor. The stress tensor is

symmetric, reflecting the inability of internal stresses to impart a net angular momentum

on a fluid.

Anticipating the kinetic energy discussion in Section 6.1, we note that stresses arising

from molecular viscosity dissipate kinetic energy. This result places a constraint on the
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form of the viscous tensor, and it motivates the name frictional stress tensor, as friction

generally dissipates mechanical energy. To illustrate this property mathematically, con-

sider friction arising from molecular viscosity to be represented in a Laplacian form, and

assume a planar geometry in order to simplify the tensor analysis. In this case, the inner

product of velocity and the friction vector, which appears in the kinetic energy budget

(equation (67)), can be written

v · ∇ · τ = vm (γ vm,n),n

= ∇ · (γ∇K) − γ v,m · v,m.

(45)

In this equation, a comma represents partial derivatives, and repeated indices are summed

over their range from 1, 2, 3. The strength of the Laplacian friction operator is scaled by

the non-negative number γ, which is the molecular dynamic viscosity for water. Typi-

cal values are around γ ≈ 10−3 kg m−1 s−1 [Gill , 1982]. More commonly considered in

applications is the kinematic viscosity

ν = γ/ρ, (46)

whose values for water are around ν ≈ 10−6 m2 s−1. The negative semidefinite term in

equation (45) thus represents a kinetic energy sink associated with local viscous dissipa-

tion. It is termed Joule heating, as it represents a conversion of mechanical energy to heat

(Sections 6.3 and 7.1). It is commonly written as

ε = ν v,m · v,m ≥ 0. (47)

As noted by McDougall [2003], frictional dissipation in the ocean interior associated with

molecular viscosity is on the order5

ε ≈ 10−9 W kg−1. (48)
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The number 10−9 W kg−1 sounds small, as indeed it is. To put it into perspective, using the

heat capacity of seawater Cp ≈ 3989 Joules kg−1 K−1, frictional dissipation via molecular

viscosity warms seawater at a rate less than 10−3 ◦K per hundred years. This is a negligible

amount of heating from a large-scale ocean circulation perspective, and so is commonly

neglected in large scale models.

4.4. Momentum budget for a parcel

With the above considerations, the equation for linear momentum of a fluid parcel takes

the form

ρ
dv

dt
+ 2Ω ∧ ρv = −ρ∇Φ + ∇ · (τ − I p). (49)

The left hand side of this equation is the time tendency for the linear momentum per

volume of a parcel, along with the Coriolis force, and the right hand side is the sum

of the gravitational, pressure, and frictional forces. The momentum equation (49) is a

form of Cauchy’s equation with the diagonal pressure force split from the stress tensor.

Cauchy’s equation becomes the Navier-Stokes equation when assuming the frictional stress

is linearly proportional to the fluid strain according to a Newtonian fluid [Aris, 1962;

Batchelor , 1967].

There are two general forms that the linear momentum equation (49) appears in ocean

models: (A) advective form, (B) vector invariant form. The two differ by how the material

time derivative is translated into an Eulerian form. The advective form exploits the

identity

ρ
dv

dt
= (ρv),t + ∇ · (ρv v) + M (ẑ ∧ ρv), (50)

where M = v ∂x(ln dy) − u ∂y(ln dx) defines an advective metric frequency. Its form

given here assumes the lateral directions are described by locally orthogonal coordinates,
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which is the typical case for ocean fluid mechanics. For example, in spherical coordinates

(r, λ, φ)6, the grid cell increments are given by dx = (r cosφ) dλ, dy = r dφ, in which case

the advective metric frequency is given by M = (u/r) tanφ. Use of equation (50) in the

linear momentum balance (49) leads to the Eulerian budget

(ρv),t + ∇ · (ρv v) + (2Ω + ẑM) ∧ ρv

= −ρ∇Φ + ∇ · (τ − I p). (51)

The vector invariant form exploits the identity

ρ
dv

dt
= ρ (∂t + ω ∧ )v + ρ∇K, (52)

where

ω = ∇ ∧ v (53)

is the three-dimensional vorticity, and

K = v · v/2 (54)

is the kinetic energy per mass of a fluid parcel. Use of equation (52) in the linear momen-

tum balance (49) leads to the prognostic equation for the linear momentum per mass; i.e.,

the velocity v

[∂t + (2Ω + ω)∧ ]v = −∇E + ρ−1 ∇ · (τ − I p), (55)

where

E = Φ + K (56)

is the total mechanical energy per mass of a fluid parcel. The vector invariant velocity

equation (55) exposes vorticity and mechanical energy per unit mass, whereas the linear
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momentum equation (51) focuses on nonlinear self-advection along with the coordinate

dependent advection metric frequency.

4.5. Vorticity and potential vorticity

Vorticity is one of the most important dynamical variables in fluid mechanics. Fur-

thermore, the associated potential vorticity scalar is key to understanding and predicting

aspects of geophysical fluid flows. This section introduces these vorticities, with more com-

plete discussions available in such places as Gill [1982], Pedlosky [1987], Müller [1995],

Salmon [1998], and Vallis [2006].

To derive the vorticity equation, take the curl of the vector-invariant form of the velocity

equation (55) to lead to the material evolution of absolute vorticity ωa = ω + 2Ω

d ωa

dt
= −ωa (∇ · v)

︸ ︷︷ ︸

vortex stretching

+ (ωa · ∇)v
︸ ︷︷ ︸

vortex tilting

+ ρ−2 (∇ρ ∧∇p)
︸ ︷︷ ︸

baroclinicity

+∇∧ F(v)
︸ ︷︷ ︸

friction

, (57)

where we wrote the friction vector in the form ∇·τ = ρF(v). The four terms on the right-

hand side represent various manners whereby a parcel’s absolute vorticity is modified.

The names associated with these terms represent the mechanisms under which vorticity

is affected. A discussion of the physics of these mechanisms is outside the scope of the

present considerations. Instead, Chapter 2 of Pedlosky [1987] is highly recommended to

garner a physical understanding.

Ertel [1942] determined that the potential vorticity

Π = ρ−1
ωa · ∇ψ (58)
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is materially conserved, so long as ψ is materially conserved and representable as just

a function of density and pressure. Ertel’s potential vorticity theorem generalizes all

vorticity theorems of fluid mechanics. It furthermore provides a very practical means

for determining constraints on the fluid motion. In particular, potential vorticity plays a

fundamental role in hydrostatic isopycnal models. Salmon [1998] discusses the connection

of Ertel’s potential vorticity conservation to the relabelling symmetry possessed by fluid

parcels. In the presence of a two component equation of state, as in the ocean, there is

no materially conserved potential vorticity [Müller , 1995]. Nonetheless, oceanographers

have made great use of approximate forms of potential vorticity, and it therefore remains

of fundamental importance in modeling.

5. Density

The density of seawater is an important variable to measure in the ocean, and to

accurately compute in an ocean model. In particular, density variations, via their effects

on the pressure field, provide one of the most important driving forces for large-scale

circulation.

Density at a point in the ocean (the in situ density) is generally a function of tempera-

ture, salinity, and pressure,

ρ = ρ(θ, S, p), (59)

where we choose to use either potential or conservative temperature (Section 7.2) in the

functional relation. This choice is more convenient than the alternative in situ tempera-

ture, since ocean models generally carry the more conservative θ as a prognostic variable

rather than in situ temperature (see Section 7 for a discussion) .
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Equation (59) is known as the equation of state. Its precise form is determined em-

pirically. The most accurate equation of state appropriate for ocean models has been

given by Jackett et al. [2006]. This work is based on that of Feistel [1993], Feistel and

Hagen [1995], and Feistel [2003]. Most ocean models are now switching to such accurate

equations of state since the earlier approximate forms, such as Bryan and Cox [1972],

maintain a relatively narrow range of salinity variations over which the equation is valid.

With ocean models of refined grid resolution and realistic fresh water forcing, it is desir-

able to remove such limitations since model salinity can vary quite widely, especially near

river mouths and sea ice.

The equation of state (59) is often approximated by replacing the pressure dependence

with a depth dependence as follows

ρ(θ, S, p) → ρ(θ, S, po(z)), (60)

where po(z) is a predefined reference pressure profile generally set as the hydrostatic pres-

sure arising from the initial density profile (Section 9.2). Converting pressure dependence

to depth dependence produces an infinite acoustic speed, which removes acoustic modes

from the system (Section 8.1). A time dependent mass conservation is retained with the

approximate density (60), and this density is used to define the seawater parcel mass, the

tracer mass, and the linear momentum. We may choose, however, to employ a more accu-

rate expression for density in computing pressure, if using the hydrostatic approximation

(Section 9.2). The resulting fluid is termed pseudo incompressible [Durran, 1999] or quasi

non-Boussinesq [Greatbatch et al., 2001].
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The functional relation ρ = ρ(θ, S, p) allows us to develop the material time derivative

of in situ density

d ln ρ

dt
=

1

ρ c2s

dp

dt
+ βS

ds

dt
− αθ

dθ

dt
. (61)

In this equation, we introduced the thermal expansion and saline contraction coefficients

αθ = −
(
∂ ln ρ

∂θ

)

p,S

(62)

βS =

(
∂ ln ρ

∂S

)

p,θ

(63)

as well as the squared sound speed

c2s =

(
∂p

∂ρ

)

S,θ

. (64)

It is interesting to note that when parcels mix as they are materially transported, e.g.,

from molecular diffusion with diffusivities κθ and κS, the potential temperature and salinity

terms in equation (61) become

1

ρ c2s

dp

dt
+ βS ∇ · (κS ∇S) − αθ ∇ · (κθ ∇θ) = −∇ · v, (65)

where mass conservation in the form (3) was used to replace the density derivative with

velocity convergence. This equation indicates that in addition to material changes in

pressure, the mixing of salinity and potential temperature act, via mass continuity, to

balance changes in a parcel’s volume. For example, absent salinity and pressure effects,

raising the potential temperature of a mass conserving fluid parcel via molecular diffusion

(∇·(κθ ∇θ) > 0) causes an increase in the parcel’s volume (d ln(dV )/dt = ∇·v > 0) when

the thermal expansion coefficient αθ is positive. We caution that this is a deceptively

simple thought experiment, since expansion of a region of fluid via heating is actually
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mediated by pressure fluctuations occuring as acoustic modes, a subject we consider in

Section 8.1.

6. Energetic budgets

There are fundamental symmetries that the momentum equation (49) respects, and

these symmetries lead to conservation laws for certain combinations of dynamical vari-

ables, such as kinetic energy and total energy. In the construction of numerical models,

it is often beneficial to build analogous symmetries and conservation laws into the dis-

crete equations. Such practices have been demonstrated to yield robust algorithms and

physically realizable solutions. In general, it is desirable to be able to manipulate the

discretized model equations in an analogous fashion to the manipulations used in obtain-

ing the conservation laws in the continuum. Unfortunately, it is not always possible to

maintain the exact conservation laws and symmetries in the discrete equations.

6.1. Kinetic energy budget

Energy is a useful scalar currency in physics because the total energy of a closed system is

conserved. The ocean is not closed, but instead is a forced dissipative system. Nonetheless,

the governing equations are energetically self-consistent, and so it is useful to consider the

energetic budgets in numerical models. We start by considering the kinetic energy of

a fluid parcel, which is given by (ρ dV )v · v/2 = (ρ dV )K. Bounds on this quadratic

quantity can provide indirect contraints with which to develop numerical algorithms for

the momentum equation. These constraints are useful since linear momentum is not

conserved on a sphere [see Section 4.11 of Grif f ies, 2004].
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The kinetic energy budget is obtained by taking the inner product of v with the linear

momentum equation (49) to find

ρ
dK
dt

= −ρv · ∇Φ − v · ∇ p+ v · ∇ · τ . (66)

Use of the identity (7) renders the Eulerian budget

(ρK),t + ∇ · (ρvK + v p) = p∇ · v − ρv · ∇Φ + v · ∇ · τ . (67)

Note that we could have obtained this budget by working with either of the Eulerian

forms: the advective form of the momentum budget (51), or the vector invariant velocity

equation (55). On the discrete lattice, it is often more convenient to work with the vector

invariant form, such as commonly used with the Arakawa C-grid models [Mesinger and

Arakawa, 1976].

Terms on the right hand side of the kinetic energy budget (67) represent energy con-

version processes, whereby kinetic energy is exchanged for other forms of energy. Recall

from the discussion of mass conservation in Section 2.1, the volume of a fluid parcel ex-

pands in a diverging velocity field according to equation (2). We thus identify p∇ · v

as a pressure work term: as pressure works to compress a fluid parcel (p∇ · v < 0), the

internal energy of the parcel increases at the cost of decreasing its kinetic energy. The

term −ρv ·∇Φ represents an exchange of kinetic energy for gravitational potential energy

arising from vertical motions. That is, as parcels move up the gravitational field gradient

(ρv · ∇Φ > 0), kinetic energy decreases as potential energy increases (see Section 6.2 for

more on gravitational potential energy). Note that in the special case, common in ocean

models, where the geopotential is aligned according to the local vertical, then ∇Φ = g ẑ,

and so ρv ·∇Φ = ρw g. Finally, the frictional stress term v ·∇·τ was discussed in Section
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4.3, where we noted that equation (45) provides the form for this term due to molecular

viscous effects.

Bringing these results together leads to the Eulerian budget for kinetic energy per

volume of a fluid parcel

(ρK),t + ∇ · (ρvK + v p− v · τ ) = p∇ · v − ρv · ∇Φ − ρ ε. (68)

In this relation, we reintroduced the more general form of the viscous transport v · τ ,

which allows us to identify a kinetic energy flux

JK = ρvK + v p− v · τ . (69)

The terms in this flux alter kinetic energy locally, but integrate to boundary terms when

considering a global budget.

In the derivation of the local kinetic energy budget (68), the Coriolis term has exactly

zero contribution to the energetics. This result follows since the Coriolis force arises from

our choice to describe motion in a moving reference frame at a point on the rotating

Earth. Such an arbitrary choice of reference frame can have no impact on the energy

of a parcel. This result suggests a desirable property for the discretized form of the

momentum equation: that there be no local kinetic energy source due to the Coriolis force.

Unfortunately, this property is difficult to achieve on the discrete lattice if components of

discrete velocity reside on a staggered grid and are not co-located. The Arakawa B-grid

has both horizontal velocity components co-located, whereas the Arakawa C-grid places

them on adjacent cell faces [Arakawa, 1966]. When local conservation is unobtainable, it

may still be useful to satisfy the global kinetic energy budget

∂t

∫

K ρ dV =

∫

dV (p∇ · v − ρv · ∇Φ − ρ ε), (70)
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in which we dropped boundary terms for brevity. In the case of the Coriolis force on an

Arakawa C-grid, there are some discretizations that ensure there is no net global spurious

source or sink of kinetic energy associated with these terms [Sadourny , 1975; Arakawa

and Lamb, 1981; Arakawa and Hsu, 1990].

6.2. Gravitational potential energy budget

The evolution of gravitational potential energy (ρ dV ) Φ for a parcel follows trivially by

use of mass conservation

(ρΦ),t + ∇ · (ρv Φ) = ρ (∂,t + v · ∇ ) Φ. (71)

Time dependence can arise for the geopotential through tidal effects. In this case, the

energetic balances for total energy of the terrestrial ocean fluid (Section 6.3) includes a

source term representing input of potential energy from the astronomical bodies affecting

the tidal forcing. In addition to time dependent effects, the potential energy of a parcel is

affected by motions through the gravitational field. Namely, motions up the geopotential

gradient (ρv · ∇Φ > 0) increase gravitational potential energy. This mechanical energy

conversion term is equal and opposite to the corresponding conversion term in the kinetic

energy budget (68).

Notably, mixing processes, which affect internal energy (Section 6.3), are absent on

the right hand side of the gravitational potential energy budget (71). So the connection

between potential energy and internal energy is indirect. That is, mixing leads to local

density modifications, which then lead to divergent flow through mass conservation (equa-

tion (3)). This then leads to work being done on the fluid, which converts internal energy

to kinetic energy. Then, through an adiabatic adjustment process, motions through the
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gravitational field are realized so to modify potential energy. This adiabatic adjustment

process is carried out very rapidly by acoustic modes (Section 8.1).

The total mechanical energy, E = K+Φ, is the sum of kinetic and gravitational potential

energies, and it evolves according to

(ρ E),t + ∇ · (ρv E + v p− v · τ ) = ρΦ,t + p∇ · v − ρ ε. (72)

On the left side is the divergence of the mechanical energy flux, with this flux acting to

transport mechanical energy throughout the fluid. On the right side are source terms that

represent time dependent gravitational effects (ρΦ,t), and the conversion between kinetic

energy and internal energy.

6.3. Mechanical plus internal energies

In the previous discussion, we have inferred the existence of internal energy based on the

conversion of mechanical energy into a non-mechanical form. This inference is founded

on assuming that total energy of a fluid parcel is conserved. Quite generally, internal

energy represents the energy of the molecular degrees of freedom that are averaged out

when formulating a continuum description of a fluid. That is, the internal energy per

mass, I, embodies the energy of molecular thermal agitation and molecular interactions,

with details of this energy unavailable with a continuum description. Another source of

energy introduced in our discussion of gravitational potential energy (Section 6.2) arises

from time dependent gravitational fields ρΦ,t, that represent tidal forcing. We consider

this as a source of energy external to the terrestrial ocean fluid.
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The total energy per mass, T (specific energy), of a fluid is therefore written as the sum

of the mechanical plus internal energies

T = K + Φ + I, (73)

where again K = v2/2 is the kinetic energy per mass of a fluid parcel, Φ is the gravitational

potential energy per mass, and I is the internal energy per mass. Energy conservation for

a fluid parcel means that total energy per mass evolves according to the conservation law

(ρ T ),t + ∇ · JT = ρΦ,t (74)

for some flux of energy JT . Again, the nonzero source term ρΦ,t arises from gravitational

effects external to the terrestrial ocean system. Nonzero normal flux components arise for

open fluid systems such as the ocean.

Based on considerations of mechanical energy flux for a parcel affected by friction, we

define the flux of total energy as

JT = ρv E + v p− v · τ + Jq. (75)

We introduced here the heat flux Jq, which is generally a function of temperature as

well as tracer concentration [for discussions, see Fofonoff , 1962; Gregg , 1984; Landau and

Lifshitz , 1987; Davis, 1994; McDougall , 2003]. Subtracting the mechanical energy budget

(72) from the total energy budget (74) leads to the internal energy budget for a fluid

parcel

ρ
dI
dt

= −∇ · Jq − p∇ · v + ρ ε. (76)

Internal energy of a parcel is thus affected by the convergence of heat fluxes, and sources

due to pressure work and frictional dissipation. Notice how internal energy is increased

by pressure work acting to compress the fluid. In the absence of irreversible effects due
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to heat transport and friction, internal energy is affected only by pressure work. Notably,

equation (76) is a reflection of the First Law of Thermodynamics applied to a moving

fluid parcel assumed to be locally in thermodynamic equilibrium, but non-locally to be

out of equilibrium. We have more to say on such applications of linear irreversible ther-

modynamics to a moving fluid in Section 7.

7. Basic non-equilibrium thermodynamics

The equations of an ocean model embody Newton’s Laws of motion applied to a contin-

uum fluid. Additionally, they employ results from linear irreversible, or non-equilibrium,

thermodynamics, which is the subject of this section. In particular, it is useful to work

with a thermodynamic variable that is readily measured, provides information about the

heat of a fluid parcel, and is conservatively transported through the fluid. However, there

is no strictly conservative thermodynamic scalar that measures heat, as there are always

sources, such as from frictional dissipation or heat of mixing. The purpose of this section

is to introduce some basic notions of non-equilibrium thermodynamics, and in the process

expose a few details about useful temperature variables.

7.1. Budgets for entropy and in situ temperature

We start the discussion with the fundamental thermodynamic relation [see, for example,

Section 5.2.4 of Grif f ies, 2004]

dI = T dζ − p dρ−1 + µS dS, (77)

where T is the in situ temperature, ζ is the entropy per mass, 1000µS = µsalt − µwater is

the relative chemical potential between salt and fresh water.7 This relation holds between

infinitesimal changes in thermodynamical state functions. Hence, although derived for
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quasi-static processes from the First Law of Thermodynamics using connections to work

and heat, equation (77) holds for arbitrary infinitesimal changes; its connection to the

First Law holds only for quasi-static processes.

Now assume that each fluid parcel is in local thermodynamic equilibrium, yet allow the

full ocean system to be out of equilibrium. These assumptions yield the following internal

energy time evolution

ρ
dI
dt

= ρ T
dζ

dt
− p∇ · v + ρ µS

dS

dt
, (78)

where we used the mass balance (3) to relate material changes in density to the velocity

convergence. The result (78) allows one to transfer the methods of equilibrium thermo-

dynamics to the non-equilibrium or linear irreversible thermodynamics of moving fluid

parcels. The term linear in this name refers to an assumption that the system is close

to thermodynamic equilibrium. In this case, the dissipative thermodynamic fluxes are

linear functions of the gradients of the thermodynamic state variables. Nonlinear effects

are not absent, however, as there are nonlinear effects from advective transport, nonlinear

source terms, a nonlinear equation of state, and nonlinear dependence of the transport

coefficients. DeGroot and Mazur [1984] provide a thorough accounting of this subject, and

Gregg [1984] and Davis [1994] apply these methods to small-scale mixing in the ocean.

Slightly different formulations can be found in Batchelor [1967] and Landau and Lifshitz

[1987], and their approaches are preferred in the following.

Using equation (76) for the evolution of internal energy in equation (78) leads to the

expression for evolution of entropy in a seawater parcel

T ρ
dζ

dt
= −∇ · Jq + ρ ε− ρ µS

dS

dt
. (79)
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This equation implies that entropy of a fluid parcel evolves by three irreversible mixing

processes: (1) convergence of heat fluxes; (2) frictional dissipation sources which increase

a parcel’s heat content via Joule heating; and (3) salinity mixing. Correspondingly, a

parcel generally maintains constant entropy if processes associated with its evolution are

adiabatic, frictionless, and isohaline. Since the friction source is very small in the ocean,

adiabatic isohaline transport is very nearly isentropic. Indeed, when ocean modelers refer

to adiabatic and isohaline processes, they typically assume this to be synonymous with

isentropic.8

We now expose a few steps along the path towards developing a scalar field whose

evolution is approximately conservative and which provides a measure of heat in the

ocean. For this purpose, we develop an equation for the evolution of in situ temperature.

To start, note that specific entropy ζ can be considered a function of pressure, temperature,

and salinity ζ(p, T, S). Consequently, its incremental change is given by

dζ = ζ,p dp+ ζ,T dT + ζ,S dS, (80)

with each of the partial derivatives taken with the other independent variables held fixed.

Use of the following Maxwell thermodynamic relations

ρ

(
∂ζ

∂p

)

T,S

= −αT (81)

(
∂ζ

∂S

)

T,p

= −∂µS

∂T
(82)

leads to

ρ T dζ = −T αT dp + ρCpS dT − ρ T
∂ µS

∂T
dS, (83)
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where we introduced the following thermodynamic response functions

CpS = T

(
∂ζ

∂T

)

p,S

(84)

αT = −
(
∂ ln ρ

∂T

)

p,S

, (85)

with CpS the specific heat with constant pressure and salinity, and αT the thermal expan-

sion coefficient for in situ temperature (in contrast to that defined for potential temper-

ature or conservative temperature used in equation (62)). As for deriving the internal

energy equation (78), assume local thermodynamic equilibrium for parcels, thus allowing

relation (83) to hold for material parcels moving through the fluid, in which case

ρCpS

dT

dt
= ρ T

dζ

dt
+ T αT

dp

dt
− ρ T

∂ µS

∂T

dS

dt
. (86)

Now employ the relation (79) for entropy evolution to render

ρCpS

dT

dt
= T αT

dp

dt
+ ρ

(

µS − T
∂ µS

∂T

)
dS

dt
+ ρ ε−∇ · Jq. (87)

Temperature of a seawater parcel is thus affected by the following processes: (1) adiabatic

pressure effects which alter the temperature via expansion or contraction of the parcel;

(2) material changes in salinity, (3) Joule heating from frictional dissipation, and (4) the

convergence of heat fluxes. It is possible to remove the adiabatic compression effects by

introducing potential temperature (Section 7.2). However, the remaining source terms

cannot in general be absorbed into another scalar function.

7.2. Potential and conservative temperatures

Vertical motion made without changes to entropy or salinity changes a fluid parcel’s

hydrostatic pressure, which causes its in situ temperature to change according to (see
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equation (83))

dT = Γ dp, (88)

where Γ = (T αT)/(ρCpS) is the adiabatic lapse rate. Consequently, in situ temperature

is not a conservative thermodynamic variable to label water parcels of common origin,

since it changes even in the absence of mixing or heating. This observation leads one to

consider removing adiabatic pressure effects from in situ temperature.

Potential temperature is defined as the in situ temperature that a water parcel of

fixed composition would have if isentropically transported from its in situ pressure to a

reference pressure pr, with the reference pressure typically taken at the ocean surface.

Mathematically, the potential temperature θ is the reference temperature obtained via

integration of dT = Γdp for an isentropic and isohaline in situ temperature change with

respect to pressure [e.g., Apel , 1987]:

θ(S, T, p; pr) = T +

pr∫

p

Γ(S, θ, p′) dp′. (89)

By definition, the in situ temperature, T , equals the potential temperature, θ, at the ref-

erence pressure p = pr. Elsewhere, they differ by an amount determined by the adiabatic

lapse rate. The potential temperature of a parcel is constant when the parcel’s entropy

and material composition are constant. Mathematically, this result follows by noting that

when entropy changes at a fixed pressure and composition, p = pr, then temperature

equals potential temperature. Equation (83) then leads to

dζ = CpS d ln θ, (90)

implying dζ = 0 if and only if dθ = 0.
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Potential temperature has proven useful for many oceanographic purposes. However,

we have yet to ask whether it is a convenient variable to mark the heat content in a parcel

of seawater. Traditionally, it is the potential temperature multiplied by the heat capacity

that is used for this purpose. Bacon and Fofonoff [1996] provide a review with sugges-

tions for this approach. In contrast, McDougall [2003] argues that potential temperature

multiplied by heat capacity is less precise, by some two orders of magnitude, than an

alternative thermodynamic tracer called potential enthalpy. Indeed, enthalpy is what is

more commonly associated with heat in thermodynamics [Fofonoff , 1962], so it is sensible

that ocean models should be carrying an enthalpy variable to represent heat content.

At present, most ocean models consider their heat variable to be potential temperature,

and this variable is assumed to be conservative. This assumption has implications for

the equation of state (59), and the calculation of heat fluxes at the ocean boundaries.

McDougall [2003] notes that if we reinterpret the model’s conservative heat variable to

be proportional to potential enthalpy, then the conservation equation

ρCo
p

dΘ

dt
= −∇ · Jq (91)

is an approximate statement of the first law of thermodynamics for the ocean. In this

equation, Θ is the conservative temperature variable, and Co
p is an appropriately chosen

constant heat capacity. The alternative to equation (91), whereby Θ is replaced by po-

tential temperature θ, is commonly used by ocean modelers. It is roughly 100 times less

accurate, and can lead to in situ sea surface temperature differences upwards of 1◦C in

regions of large salinity deviation. The NASA GISS ocean model [Russell et al., 1995]

uses potential enthalpy for its heat variable, and the new version of the Modular Ocean

Model [Grif f ies, 2007] provides an option for using conservative temperature. For the
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remainder of this document, we use potential temperature θ as the heat scalar, noting

that the equations remain the same if using the more accurate Θ.

8. Linear modes of motion

Having now developed the fundamental equations of the ocean, we move onto the task

of introducing the linear dynamical modes admitted by these equations. This analysis

initiates an exploration of the multitude of dynamical processes active in the ocean. More

central to our purposes, the analysis provides us with guidance towards which numerical

methods are needed to integrate the equations. The results are generally used to moti-

vate certain approximations, so some material here anticipates approximation methods

discussed in Section 9.

We are particularly interested here in the speed of various linear dynamical modes.

This then allows us to determine a guide for the time step required to explicitly represent

a particular mode by making use of the Courant-Freidrichs-Levy (CFL) constraint [e.g.,

Haltiner and Williams, 1980; Durran, 1999]. Depending on details of space and time

discretization, this constraint says that when simulating a propagating signal on a discrete

lattice, U ∆t/∆ must remain less than a number on the order of unity. Here, U is the

speed of the mode, ∆ is the discrete grid spacing, and ∆t is the discrete time step. The

CFL constraint says that as motions increase in speed, the numerical model must reduce

its time step to represent these motions. Finer grid spacings also require smaller time

steps. If the model fails to satisfy the CFL constraint for a particular mode, the model

will likely go unstable, and it generally will do so quite rapidly.

8.1. Acoustic waves
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Linear acoustic fluctuations arise from small amplitude adiabatic, frictionless, and iso-

haline motion [e.g., Apel , 1987]. Such motions lead, through the equation of state, to the

equation for pressure fluctuations in terms of density fluctuations (see equation (61))

dp

dt
= ρ c2s

d ln ρ

dt
. (92)

Noting the approximate form of mass conservation in Section 9, we write mass conservation

in the form

εnb

d ln ρ

dt
= −∇ · v, (93)

where we introduced the non-dimensional parameter εnb, with εnb = 1 with mass conserv-

ing non-Boussinesq kinematics and εnb = 0 for incompressible flow. Likewise, we write

the linearized velocity equations, in the absence of the Coriolis force, friction, and gravity

force, in the form

ρu,t = −∇z p (94)

εnh ρw,t = −p,z (95)

where ∇z is the horizontal gradient operator, and we introduced the non-dimensional

parameter εnh, which is unity for non-hydrostatic dynamics and vanishes for hydrostatic

dynamics. Use of these relations in a linearized version of the pressure equation (92) leads

to the wave equation for linear pressure fluctuations9

[εnb εnh ∂tt − c2s (εnh ∇2
z + ∂zz)] p = 0. (96)

Considering a single Fourier mode with space-time dependence of the form exp[i (ω t −

k x− l y−mz)], an approximate modal analysis of the above system yields the dispersion
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relation involving two of the four modes to be of the form

(
εnh εnb

c2s

)

ω2 = εnh (k2 + l2) +m2. (97)

The unapproximated system (with εnb = εnh = 1) has non-dispersive modes that travel at

speed cs in three-dimensions. The phase speed cs ∼ 1500 ms−1 in the ocean is roughly

two orders of magnitude faster than motions of interest in most climate and regional

applications. If these modes were explicitly represented in models, then the time step

would be very small, making the model prohibitively expensive.

There are three distinct ways in which the acoustic modes can be “filtered” from the

system.

• Make the equation of state independent of pressure (incompressible), in which case

1/cs → 0. This approach has the advantage that only the equation of state is modified.

It has the disadvantage that it is inappropriate to neglect the effect of pressure on density

at global scales [e.g., Dewar et al., 1998].

• Constrain the flow to be incompressible by setting εnb = 0. Here, sound waves are

prohibited because the acoustic mode propagation requires divergent flow to drive density

and pressure anomalies. This approach, used alone, renders the system elliptic in pressure.

It is the approach used in the MIT GCM when integrating the Boussinesq non-hydrostatic

equations [Marshall et al., 1997].

• Assume hydrostatic (or quasi-hydrostatic) balance in the vertical momentum equa-

tion (set εnh = 0). In this case, only the m = 0 mode satisfies the dispersion relation (97).

This is the traditional approach in meteorology, which filters vertically propagating sound

waves, but retains an external acoustic mode known as the Lamb wave.
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In oceanography, the traditional filters used are the second and third in conjunction.

This approach filters out all acoustic modes and converts the elliptic problem for pressure

into the local one-dimensional hydrostatic balance. Recently, however, non-Boussinesq

ocean models are becoming the norm. In these models, only hydrostatic balance is used

to filter acoustic modes, thus retaining the Lamb wave. The Lamb wave has not yet

presented itself as a cause for concern in the stability of non-Boussinesq hydrostatic ocean

models, probably because the time implicit or split-explicit treatment of the external

mode is sufficient to damp or resolve this mode [see comment at the end of DeSzoeke and

Samelson, 2002].

A fourth approach to numerically handling acoustic modes has been used in regional

models. Here, rather than filtering the modes, the models slow them down so that they

can be explicitly resolved [Browning et al., 1990]. As for the first method above, this

approach is likely to be inappropriate for global scale modeling.

8.2. Inertia-gravity waves

The next fastest linear modes are the inertia-gravity waves. These are rotationally mod-

ified gravity waves which exist as external modes as well as an infinite range of internal

modes. The external mode can be analyzed in the context of the depth integrated Boussi-

nesq equations, or equivalently by considering a homogenous layer of constant density

fluid [e.g., Sections 5.6 and 8.2 of Gill , 1982]. These equations are often referred to as the

shallow water equations, which we write in their linear form as

(∂t + f ẑ∧ )u = −g∇ η (98)

η,t = −H∇ · u, (99)
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where u is the horizontal velocity field in the homogeneous layer, η is the surface height

fluctuation with respect to a resting fluid at z = 0, and H is the depth of the resting

fluid, assumed constant for present purposes. We assume the Coriolis parameter f to be

constant, which is the f-plane approximation.

Introducing a space-time dependence of the form exp[i (ω t − k x − l y)] leads to three

linear eigenmodes. The first occurs with zero frequency ω = 0, which is the geostrophic

mode where the Coriolis force balances pressure f ẑ ∧ u = −g∇ η. The geostrophic mode

is a stationary mode of variability. It therefore places no time step constraint on the

simulation. However, it is a critical element determining the large-scale structure of the

ocean circulation. The nonzero frequency modes satisfy the dispersion relation

ω2 = f 2 + g H (k2 + l2). (100)

The waves satisfying this relation are a pair of dispersive inertia-gravity or Poincaré waves.

These waves provide the mechanism by which a fluid adjusts to an imbalance which then

leads to geostrophic balance.

The inability of a numerical simulation to adequately adjust by inertia-gravity waves is

very often the cause of grid-scale noise. For example, models built on the Arakawa B-grid

can exhibit a checkerboard mode in the surface height field, and this is a direct consequence

of the grid scale gravity waves exhibiting a null mode (spurious zero frequency numerical

mode) [Messinger , 1973; Killworth et al., 1991]. That is, certain of the numerical gravity

waves are spuriously static, rather than propagating. Similarly, coarse resolution models

built on the Arakawa C-grid exhibit longitudinal or latitudinal coherent noise which is

a direct consequence of a null-mode associated with the numerical representation of the

Coriolis force [see Adcroft et al., 1999, for a review of this issue].
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Regardless of the spatial treatment of the inertia-gravity modes, permitting these modes

in a simulation introduces a limitation on the model time step if they are to be treated

explicitly. For short waves, the phase and group speed are approximately that of surface

gravity waves. In the deep open ocean, this speed is of order
√
gH ≈ 200m s−1. Satisfying

the CFL condition for these waves in a model with ∆ = 100km horizontal grid spacing

(roughly 1◦ resolution) means the time step must satisfy ∆t = ∆/U ≈ 500 seconds.

Although longer than the time step required to admit acoustic waves, this time step is

far smaller than practical when considering the needs of global ocean modeling given the

present power of computers. Other approaches must be used to avoid this limitation for

the full model equations (see section 11.6).

In contrast to the short waves, long inertia-gravity waves are dominated by rotation

(w2 ∼ f 2). In this case, we are led to a time step limitation as a function of the Coriolis

parameter. The most stringent limitation arising from these inertial waves occurs at the

pole, where 1/(2Ω) ∼ 1.9 hours.

We now consider internal modes, in which stratification is relevant. For this purpose,

consider the following linear Boussinesq non-hydrostatic system

ρo (∂t + f ẑ∧ )u = −∇h p (101)

εnh w,t + g + p,z/ρ = 0 (102)

∇ · u + w,z = 0 (103)

ρ,t − (N2 ρo/g)w = 0, (104)

where ρo is the constant Boussinesq reference density, and we again introduce a non-

dimensional parameter εnh to monitor non-hydrostatic effects. We ignore horizontal den-
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sity variations, as our focus is on effects of vertical stratification as represented by the

squared buoyancy frequency

N2 = −(g/ρo) ρ,z, (105)

which is assumed constant for present purposes. A linear modal analysis assuming a space-

time dependence of the form exp[i (ω t − k x − l y −mz)] leads to both the geostrophic

mode (ω = 0), and the internal inertia-gravity wave dispersion relation

(
εnh (k2 + l2) +m2

)
ω2 = m2f 2 + (k2 + l2)N2. (106)

Non-hydrostatic effects are generally relevent only for regimes where the aspect ratio (ratio

of vertical to horizontal scales) is order unity, meaning the horizontal wave numbers are

on the order of the vertical: k2 + l2 ≈ m2. These modes are responsible for allowing

the fluid to adjust towards geostrophic balance, as well as to hydrostatic balance in the

case of non-hydrostatic models. For hydrostatic inertia-gravity waves, the long-waves are

dominated by rotation, as were the external waves, while short waves have phase speed

approaching the internal wave speed,
√

N/m.

8.3. Rossby waves

Rossby waves represent a slowly evolving nearly geostrophic fluctuation. They arise

from the gradient of the Coriolis parameter (see equation (121) for definition of Coriolis

parameter) with respect to latitude

β = f,y

= (2 Ω/R) cosφ.

(107)

To develop the dispersion relation for Rossby waves, reconsider the linear shallow water

system (98)-(99), only now let the Coriolis parameter be given by a linear function of

latitude f = fo + β y, with fo and β constant. Assuming a space-time dependence of the
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form exp[i (ω t − k x − l y)] leads to the dispersion relation satisfied for this beta plane

shallow water system [e.g., Section 6.4 of Cushman-Roisin, 1994]

ω = −β L2
d

(
l

1 + L2
d (k2 + l2)

)

, (108)

where L2
d f

2
o = g H defines the Rossby radius of deformation.

Spurious behavior of numerical Rossby waves can often be associated with spurious

behavior of inertia-gravity waves. This arises because spurious behavior of inertia-gravity

waves implies a spurious gravitational adjustment process, which in turn leads to a poor

representation of the geostrophic balance for some modes. Short scale Rossby waves are

generally dissipated locally before they can propagate far. Indeed, this, and a preferred

westward drift for large scale waves, is the mechanism of western enhancement of boundary

currents [Pedlosky , 1987]. A common numerical problem associated with Rossby waves is

due to insufficient dissipation necessary to trap eastward propagating, short-scale Rossby

waves. To remove this problem requires enhancing horizontal friction sufficiently to resolve

the Munk boundary layer [Munk , 1950; Grif f ies and Hallberg , 2000; Large et al., 2001].

Once inertial boundary currents are resolved, eddy-mean flow interactions and other non-

linear interactions tend to be sufficient. Further discussion of numerical representation of

Rossby waves can be found in Wajsowicz [1986] and Fox-Rabinovitz [1991].

8.4. Implications for stability of numerical models

The stability of numerical models depends on the choice of numerical time-integration

method, the spatial discretization and the permitted modes in the equations. Ocean

models generally do not permit acoustic modes which would otherwise be prohibitive: a

grid spacing of 100 km would require a time-step of order less than 1 minute if the model
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admitted acoustic modes. The next fastest modes are the external gravity waves, with

speeds exceeding 200m s−1 in the deep ocean. As discussed in Section 11.6, these modes

are usually treated separately from the full three-dimensional fluctuations. We thus do not

consider external modes in this section. The remaining processes may cause a numerical

model to be unstable either through (A) a direct numerical instability or (B) through the

generation or admission of excessive grid-scale noise.

A process may be directly numerically unstable, in the von Neuman sense [Durran,

1999], if it is treated explicitly and the shortest characteristic time scale of that process

is not resolved by the model time step. Time implicit treatment of a process often yields

unconditional numerical stability, although other considerations such as accuracy may

lead to constraints on the model time step.

The simplest example of a process with an identifiable term in the equations are inertial

oscillations, for which the Coriolis term is responsible. The characteristic time scale is f−1

which is shortest at the poles: (4π/1day)−1 ∼ 1.9 hours. To resolve inertial oscillations,

a time explicit integration scheme requires that

f∆t < γ (109)

where γ is a number that depends on the details of the numerical integration scheme. We

choose γ = 1/2 as a representative number. Thus, the maximum time step allowed to

integrate inertial oscillations stably is ∆tfmax = γ/f . For reference, 1/(2f) ∼ 57 minutes

is plotted in Figure 5.

Advection is characterized by a velocity scale, U . The shortest advective charactistic

time scale in a numerical model is ∆/U , where ∆ is the spatial grid scale and U is

representative of the largest characteristic velocity. The CFL number is the ratio of this
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characteristic time scale to the model time step,

Cu =
U ∆t

∆
. (110)

This dimensionless ratio is often known as the Courant number. Most time explicit

schemes for advection require that Cu be less than a number on the order of unity, with

the constraint more restrictive in higher dimensions due to the possibility of propaga-

tion diagonal to the discrete grid lines. That is, the largest time step that can support

numerical stability for a given flow and grid spacing scales as

∆tumax ∝ ∆

U
. (111)

This result applies in all spatial directions for which advection is explicit. In practice, this

constraint can be most restrictive for regions of fine vertical resolution with strong surface

wind stress curls. Furthermore, the CFL criteria may be either additive or independent,

again depending on the algorithm details.

The flow speed U is a result of the forcing and balances in a model simulation. It is

also a function of resolution, particularly for low resolution models. The transport of

ocean boundary currents is determined by the basin wide forcing, and numerical models

respect this transport even at coarse resolution. However, if the boundary current is not

resolved, such as when there is only one cell in the current, then U becomes inversely

proportional to ∆, in order to maintain the proper transport. For the purposes of this

discussion, we have chosen a profile for U(∆) depicted in Figure 4. The corresponding

limitation on time step (dashed line in Figure 5) has a ∆1 dependence at fine resolution,

and a ∆2 dependence at coarse resolution. These two resolution regimes for U and ∆tU

are indicated in Table 1.
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The gravest internal gravity wave (lowest vertical eigenmode) propagates with a charac-

teristic speed cg ∝ NH. These waves have a grid-scale characteristic time of ∆/cg, which

in turn leads to a stability constraint that ∆t must be smaller than

∆tcg

max ∝ ∆

cg
. (112)

Unlike advection, the fastest internal wave speed is independent of resolution.

A friction operator is typically used to control noise in numerical models, and to main-

tain a grid Reynolds number on the order of unity or less to keep the solution stable.

Typical causes of noise include a high grid Reynolds number (i.e. velocity advection dom-

inates accelerations), or insufficient dissipation to damp short eastward propagatig Rossby

waves near boundaries. As shown below, at coarse resolutions, the boundary resolution

criteria dominates the need for viscosity, whereas the grid Reynolds number criteria dom-

inates at fine resolution. Additionally, biharmonic friction operators are favored at fine

resolution due to their enhanced scale selectivity, thus increasing the energetics of the flow

while, ideally, maintaining a sufficient level of dissipation at the grid scale [e.g., Semtner

and Mintz , 1977; Grif f ies and Hallberg , 2000]. Notably, a lack of sufficient friction may

not immediately translate into a catastrophic model instability (i.e., model blow-up). In-

stead, depending on grid resolution, forcing, and numerical methods, it is possible for

models to run stably, albeit with unphysically huge levels of grid noise, using very small,

if not zero, lateral friction.

We now consider the time step constraints introduced by the laplacian and biharmonic

friction operators. Viscous dissipation terms have a grid-scale characteristic time of ∆2/A2

and ∆4/A4, for harmonic and biharmonic viscosities, respectively. The explicit stability
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criteria require that the time step be smaller than

∆t
A2

max ∝ ∆2

A2
or ∆t

A4

max ∝ ∆4

A4
(113)

respectively. These appear to have higher power dependence on ∆ than the advective

(∆tumax) and gravity wave (∆t
cg
max) constraints. But this result is only true for given

viscosity parameters (A2 or A4). In practive, the viscosity applied in ocean models is a

strong function of resolution, and there are two distinct criteria for setting the viscosity.

At very coarse resolution, a significant source of noise can occur when the viscous Munk

boundary layer is not resolved [Munk , 1950]. The boundary layer scale, Lb, scales as

Lb ∝
{

(A2

β
)1/3 harmonic friction

(A4

β
)1/5 biharmonic friction

(114)

where β ∼ 2 × 10−11 m−1s−1 is the planetary vorticity gradient at the equator. If we

chose the viscosities to be sufficient to create a Munk boundary layer wide enough to be

resolved by a grid-spacing, ∆, then the viscosities will scale as

A2 ∝ β∆3 or A4 ∝ β∆5 (115)

respectively.10 This scaling determines the slope of the curves for A2 and A4 in coarse grid

spacing regime of Figure 4. Thus the effective characteristic time scales (equation (113))

for viscosity becomes (β∆)−1 for both harmonic and biharmonic forms. This scaling is

seen in the far right column of Table 1.

The second criteria for setting the viscosity applies to finer resolution where non-linearity

in the momentum equation is sufficient to form an inertial boundary layer (which will be

thinner than the frictional boundary layer of coarse resolution models). In this regime, the

role of the viscous terms is to dissipate grid scale energy and noise. The required viscosity

can be estimated by requiring the grid Reynolds number to be finite (say of order 1), so
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that

A2 ∝ Ub ∆ or A4 ∝ Ub ∆3 (116)

where Ub is the scale of the boundary speed, which itself is also a function of grid resolution.

At very fine resolution, the grid-length characteristic time-scale (equation (113)) of either

form of viscosity becomes

∆t
A2,4

max ∝ ∆

Ub
(117)

There is a marginal resolution where the viscous boundary layer is resolved but the inertial

boundary layer may be marginally resolved so that the maximum realized velocity is still

a function of resolution. In this narrow regime, the characteristic time-scale for viscosities

becomes

∆t
A2,4

max ∝ ∆2

Ub Lb
. (118)

where Lb is now the realistic inertial boundary layer scale. The three regimes for scaling

behavior of the viscous limitation on maximum time step are listed in Table 1.

Figure 5 schematically shows the scaling of maximum time step discussed above and

tabulated in Table 1. The absolute values are not necessarily appropriate to any specific

model, because discretization modifies the numerical coefficients that have been ignored

for these curves. Of note, though, is that the scaling behavior of largest stable time step

allowed in a model is very complicated at course and marginal resolutions, more so than is

indicated by the curves shown. In contrast, the scaling becomes simple at fine resolutions.

In practice, the numerical details of the laplacian and biharmonic friction operators will

make the maximum allowed time step shorter. At coarse resolution, we typically find

∆t
A4

max < ∆t
A2

max < ∆tumax. This result is not apparent in Figure 5 since we have arbitrarily
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set all time scales to be equal at the grid scale. That is, at coarse resolution where the

boundary currents are not resolved, the time step is usually limited by viscosity.

Besides grid scale dependent viscosities, which are now common in ocean models,

Smagorinsky [1963, 1993] proposed that the Laplacian viscosity due to unresolved scales

should be proportional to the resolved horizontal deformation rate times the squared grid

spacing. In effect, the Smagorinsky viscosity tailors the local dissipation to both the local

flow state and the local grid resolution, using only a single nondimensional adjustable

parameter. If this parameter is properly chosen, the resulting viscosity ensures that the

flow respects the numerical stability properties previously discussed, even when simulating

multiple flow and grid regimes such as occur in realistic ocean simulations. It is for these

pragmatic reasons that the Smagorinsky viscosity has found notable use in large-scale

ocean models [e.g., Blumberg and Mellor , 1987; Rosati and Miyakoda, 1988; Bleck and

Boudra, 1981; Bleck et al., 1992], with Grif f ies and Hallberg [2000] also arguing for its

utility with a biharmonic operator.

In Figure 5, we have also shown the ∆tf time scale arising from inertial oscillations.

This time scale is independent of spatial resolution. The ∆tcg time scale arises from

internal gravity waves, and it has a scaling of ∆1, with cg ∼ N H invariant with resolution

(Section 8.2). Vertical friction also has stability criteria, but are somewhat easier to treat

implicitly in time because of the non-periodic nature of the vertical direction and the

small aspect ratio of the computational grid. Notably, there are typically many fewer

degrees of freedom in the vertical than the horizontal directions.

9. Approximations
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We denote the set of equations developed thus far the unapproximated ocean equations.

There have indeed been approximations made in deriving these equations: the continuum

hypothesis; geopotentials are approximated by surfaces of constant oblate spheroid radius

(Section 4.1); angular rotation rate of the Earth is constant. Nonetheless, the suite

of phenomena described by these equations is immense, with space time scales ranging

from millimeter and seconds to global and millenia. Various methods have been used to

filter the equations to focus on particular subranges of this spectrum. From a modeling

perspective, filtering, or approximating, the equations helps to reduce the cost of the

resulting simulation. The previous discussion of linear modes anticipated some of the

approximations commonly made in physical oceanography. We more formally review

these approximations in this section.

9.1. Shallow ocean approximation

In the shallow ocean approximation,11 the metric functions measuring horizontal dis-

tances on the Earth are dependent only on the lateral coordinates. Radial dependence

of the metric functions is reduced to the constant radial factor R = 6.367 × 106 m. This

radius corresponds to the ellipsoid of best fit to the sea level geopotential. This is the

appropriate value for the “Earth’s radius” of use in ocean models. Note that R in ocean

models is often taken as the slightly larger value R = 6.371 × 106 m. This value corre-

sponds to the radius of a sphere with the same volume as the Earth [Gill , 1982, page

597].

The shallow ocean approximation is motivated by noting the relatively small thickness

of the ocean relative to the Earth’s radius. Within this approximation, distances used

to compute partial derivatives, covariant derivatives, areas, and volumes are determined
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by a metric tensor whose components are functions only of the lateral position on the

sphere. Additionally, assumptions regarding the metric function dependence, as well as

assumptions about the smallness of vertical accelerations associated with the hydrostatic

approximation (Section 9.2), have implications toward the energy and angular momentum

conservation laws. In particular, the angular momentum about the Earth’s center is

computed with a moment-arm that has a fixed radius r = R. Hence, motion in the

vertical direction does not alter angular momentum in the shallow ocean approximation.

9.2. Hydrostatic approximation

The hydrostatic approximation exploits the large disparity between horizontal motions,

occurring over scales of many tens to hundreds of kilometers, and vertical motions, oc-

curring over scales of tens to hundreds of meters. In this case, it is quite accurate to

assume the moving fluid maintains the hydrostatic balance, whereby the vertical momen-

tum equation takes the form

p,z = −ρ g. (119)

Because the vertical momentum budget has been reduced to the hydrostatic balance, the

Coriolis force per mass must be given by

Fc = −f ẑ ∧ v, (120)

where

f = 2 Ω sinφ (121)

is the Coriolis parameter and φ is the latitude. That is, we drop the nonradial component

of the Earth’s angular rotation vector when computing the Coriolis force in a hydrostatic

fluid.12
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By truncating, or filtering, the vertical momentum budget to the inviscid hydrostatic

balance, we are obliged to parameterize strong vertical motions occurring in convective

regions, since hydrostatic equations cannot explicitly represent these motions. Such has

led to various convective parameterizations in use by ocean models [Killworth, 1989; Mar-

shall and Schott , 1999]. These parameterizations are essential for the models to accurately

simulate various deep water formation processes, especially those occurring in the open

ocean due to strong buoyancy fluxes.

The kinetic energy density for a hydrostatic fluid involves only the horizontal motions

[e.g., Bokhove, 2000], so that

K =
1

2
u · u. (122)

No other change is required for the energetic relations established in Section 6 to follow

through for the hydrostatic fluid. This result is self consistent with the scaling implicit in

the hydrostatic balance that w � |u|. Correspondingly, the hydrostatic relative vorticity

vector is

ω = ∇ ∧ u, (123)

where u is the horizontal velocity vector.

Making these three changes in the non-hydrostatic velocity equation (55) leads to the

hydrostatic vector invariant velocity equation

[∂t + (f ẑ + ω)∧ ]v = −∇E + ρ−1 ∇ · (τ − I p), (124)

where again E = u·u/2+Φ. Note that the vertical component to equation (124) reduces to

the hydrostatic balance upon setting the time derivative of the vertical velocity component

to zero, and by noting that the hydrostatic form of K and ω mean that ∇K+ ω ∧ v has

zero vertical component.
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In hydrostatic ocean models, the effects of horizontal stresses are usefully split from

vertical stresses when discussing friction. Friction from vertical stresses are generally

parameterized by downgradient diffusion of momentum

(∇ · τ )vertical strain = ∂z (κmodel u,z) (125)

where κmodel > 0 is the vertical viscosity used in the model. The vertical (more generally

dianeutral) viscosity is generally assumed to be equal to, or more often roughly ten times

greater than, the vertical or dianeutral diffusivity employed for tracer. This vertical

Prandtl number (ratio of viscosity to diffusivity) is not well measured in the ocean, leaving

modelers to tune this parameter based on simulation integrity.

Vertically integrating the hydrostatic balance (119) over the full depth of the ocean

fluid leads to

pb − pa = g

η∫

−H

ρ dz, (126)

with pb the hydrostatic pressure at the ocean bottom, and pa the pressure at the ocean

surface applied from the overlying atmosphere or ice. Use of this result in the mass budget

(30) then leads to

∂t (pb − pa) = −∇ ·Uρ + qw ρw. (127)

Assuming knowledge of the tendency for the applied surface pressure pa, this budget is

isomorphic to that for the Boussinesq surface height (equation (143)).

9.3. Oceanic Boussinesq approximation

The Boussinesq approximation is an attempt to simplify the appearance of density in

the ocean equations. In situ density in the large-scale ocean varies by a relatively small

amount, with a 5% variation over the full ocean column at the upper end of the range,
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and most of this variation due to compressibility which has no dynamical consequence.

Furthermore, the dynamically relevent horizontal density variations, ∆ ρ, are on the order

of 0.1%. Thus, it is justifiable to make approximations to the density in certain terms

within the ocean equations, as discussed in this section.

There are two distinct steps to the Boussinesq approximation. We refer to these two

steps in conjunction as the oceanic Boussinesq approximation. The first step of the Boussi-

nesq approximation applies a linearization to the velocity equation (55) by removing the

nonlinear product of density times velocity

[∂t + (f ẑ + ω) ] ∧ ρo v + ρo ∇z K + ρ∇z Φ = ∇ · τ . (128)

The associated Boussinesq kinetic energy budget is given by

(ρo K),t + ∇ · (ρo Kv + pv − v · τ ) = p∇ · v − ρv · ∇Φ − ρo ε. (129)

To obtain these results, the product ρv was replaced by ρo v, where ρo is a constant

Boussinesq reference density.13 Importantly, one retains the in situ density dependence of

the gravitational potential energy, and correspondingly for the hydrostatic pressure. It

is here that variations in density create critical dynamical effects. It is notable that, as

shown by equation (159), hydrostatic non-Boussinesq models based on pressure as the

vertical coordinate naturally eliminate the nonlinear product ρv, thus removing the need

to make any approximations [Huang et al., 2001; DeSzoeke and Samelson, 2002; Marshall

et al., 2004; Losch et al., 2004]. Interest in removing these nonlinear products arises in

hydrostatic ocean modeling using depth based vertical coordinates.

The second step in the oceanic Boussinesq approximation considers the mass conti-

nuity equation (5). Here, we note that to leading order, the three dimensional flow is
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incompressible:

∇ · v ≈ 0. (130)

It is this step in the approximation which filters acoustic modes, if not already filtered

by the hydrostatic approximation (Section 8.1). More formally, the nearly incompressible

observation manifests in the following scaling

d ln ρ

dt
� ∇ · v. (131)

This scaling follows since

d ln ρ/dt ∼ (U/L) ∆ ρ/ρo, (132)

whereas each term of ∇·v scales as U/L or W/H. Here, (U,W ) are horizontal and vertical

velocity scales, and (L,H) are horizontal and vertical length scales. With ∇ · v = 0,

mass conserving kinematics of the non-Boussinesq system are translated into a volume

conserving kinematics, in which case the mass of a parcel is approximated by dM = ρo dV ,

and the tracer mass in a parcel is approximated by (ρo dV )C.

There are some confusing points that arise when considering the Boussinesq approxi-

mation. Namely, volume conservation for a parcel, through the mass budget (2), means

that the three dimensional velocity field v is nondivergent. A nondivergent velocity field

cannot support acoustic modes (Section 8.1), and this is useful for purposes of large scale

modeling. A nondivergent velocity field also cannot support material evolution of in situ

density (equation (3)). Furthermore, through equation (61), a nondivergent velocity only

supports, in general, adiabatic and isohaline motions. These motions are of interest for

ideal incompressible fluid mechanics. They are, however, insufficient for describing the

ocean circulation where mixing and heating are critical.14
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How does the oceanic Boussinesq approximation work in ocean models? The oceanic

Boussinesq approximation assumes the resolved flow to be incompressible, in which case

acoustic modes are not supported. It furthermore retains the dependence of density on

pressure, heating, and salinity mixing, thus avoiding any assumption regarding the fluid.

To support a nontrivial material evolution of density, as arises through pressure changes,

mixing, and heating, requires a divergent velocity field, which is unresolved in oceanic

Boussinesq models: the effect of this divergent velocity field manifests through nontrivial

density evolution.

To illustrate how a Boussinesq model can support nontrivial density evolution, write

the velocity as the sum of divergent and non-divergent components

v = vnd + vd. (133)

The divergent velocity vd is associated with the acoustic modes. Although we do not

present a formal asymptotic analysis here, the acoustic fluctuations are of small amplitude

and high frequency with respect to the oceanic flows of interest, which are embodied in

vnd. That is,

|vd| � |vnd|. (134)

By construction, the continuity equation can now be split into the following two parts

∇ · vnd = 0 (135)

∇ · vd = −d ln ρ/dt. (136)

Given the scaling noted above, the non-divergent velocity contributes to leading order in

the material time derivative on the right hand side of equation (137), so that

∇ · vd ≈ −dnd ln ρ

dt
, (137)
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where dnd/dt = ∂t + vnd · ∇. The divergent velocity is seen, through mass conservation

(3), to support a nonzero material evolution of density. This evolution, through equation

(61), is affected by pressure fluctuations, salinity mixing, and heating

1

ρ c2s

dp

dt
+ βS

dS

dt
− αθ

dθ

dt
= −∇ · vd. (138)

The oceanic Boussinesq approximation considers the resolved prognostic velocity field

to be the non-divergent velocity vnd, and this maintains an incompressible prognostic flow

field that does not support acoustic modes. It is this velocity which is time stepped via

the Boussinesq momentum equation, and it is this velocity which transports tracer via

advection. The divergent velocity vd does not vanish, however, as each term on the left

hand side of equation (138) is generally nonzero for the oceanic Boussinesq approximation.

Instead, its divergence can in principle be diagnosed by evaluating the terms in equation

(138).15 Again, it is the existence of vd which allows the oceanic Boussinesq system to

self-consistently employ a realistic equation of state, in which density is a function of

pressure, temperature, and salinity, thus supporting nonzero material time variations of

the in situ density. These variations are critical for representing the thermohaline induced

variations in density which are key drivers of the large scale ocean circulation.

Implications for gravitational potential energety

To obtain the gravitational potential energy equation, multiply the approximate mass

budget (137), involving the divergent velocity, by the geopotential Φ, to render the Boussi-

nesq gravitational potential energy equation

(ρΦ),t + ∇ · (ρΦvnd) = ρ (∂t + vnd · ∇) Φ − Φ ρ∇ · vd. (139)
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Hence, from the perspective of the Boussinesq ocean model, which time steps the nondi-

vergent velocity vnd, there is a new term affecting potential energy relative to the unap-

proximated budget (71). This term is given by

−Φ ρ∇ · vd = Φ
dρ

dt
(140)

= Φ ρ

(
1

ρ c2s

dp

dt
+ βS

dS

dt
− αθ

dθ

dt

)

, (141)

where we used equation (61) to replace the divergence ∇·vd with the material changes in

pressure, temperature, and salinity. This source is affected by fluctuations in the pressure

field, heating, and salinity mixing (equation (65)). Importantly, these three processes are

coupled, with heating and mixing, for example, affecting pressure and pressure affecting

dynamics. Note that in Boussinesq models that replace the pressure dependence of density

with depth dependence, as in equation (60), the source takes the form

−Φ ρ∇ · vd = Φ ρ

(
w

ρ c2s

∂ρ

∂p

∂po

∂z
+ βS

dS

dt
− αθ

dθ

dt

)

. (142)

Contrary to the more general form (141), the pressure contribution is more readily di-

agnosed in an ocean model using this simpler equation of state. Further discussion of

energetics of Boussinesq equations using the simpler equation of state can be found in

Vallis [2006].

Implications for sea level height

We now ask how well the Boussinesq ocean model approximates the surface height

relative to the non-Boussinesq model. The surface height in a Boussinesq ocean model

satisfies the approximate balance of volume conservation for the column

ηBouss

,t = −∇ · U + qwρw/ρo, (143)
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where U =
∫ η

−H
dz u is the vertically integrated horizontal velocity. This equation approx-

imates the more exact result for a mass conserving fluid, realized by vertically integrating

the mass conservation equation (3) over a column of seawater, using the bottom kinematic

boundary condition (24) and surface kinematic boundary condition (32), to find

η,t = −∇ ·U +
qw ρw

ρ(η)
−

η∫

−H

dz
d ln ρ

dt
, (144)

where ρ(η) is the density at the ocean surface. The missing term in the Boussinesq surface

height equation (143) arises from stretching and compressing a vertical column associated

with changes in the ocean hydrography within a fluid column. The absence of this steric

effect represents a limitation of Boussinesq ocean models for prognostically simulating, for

example, affects of anthropogenic climate changes on sea level [Greatbatch, 1994; Mellor

and Ezer , 1995].16

10. Elements of vertical coordinates

A key characteristic of rotating and stratified fluids, such as the ocean, is the dom-

inance of lateral over vertical transport. Hence, it is traditional in ocean modeling to

orient the two horizontal coordinates orthogonal to the local vertical direction as deter-

mined by gravity. The more difficult choice is how to specify the vertical coordinate,

and the associated transport across surfaces of constant vertical coordinate. Indeed, the

choice of vertical coordinate is arguably the single most important aspect of an ocean

model’s design. The main reason it is crucial is that practical issues of representation

and parameterization are often directly linked to the vertical coordinate choice, and such

enters at a fundamental level to developing the model algorithms.

10.1. Three flow regimes
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Currently, there are three main vertical coordinates in use by ocean modelers, and they

arose from applications focusing on complementary dynamical regimes. The following

characterizes these regimes, and provides a qualitative assessment of the abilities of the

three coordinates. This assessment is subject to modifications due to algorithmic im-

provements, continually being developed, which push the envelope of applicability for the

various vertical coordinates.

• Upper ocean mixed layer: This is a generally turbulent region dominated by transfers

of momentum, heat, freshwater, and tracers with the overlying atmosphere, sea ice, rivers,

etc. It is of prime importance for climate system modeling and operational oceanogra-

phy. It is typically very well mixed in the vertical through three-dimensional convec-

tive/turbulent processes. These processes involve non-hydrostatic physics which requires

very fine horizontal and vertical resolution (i.e., a vertical to horizontal grid aspect ratio

near unity) to explicitly represent. In this region, it is useful to employ a vertical coordi-

nate that facilitates the representation and parameterization of these highly turbulent pro-

cesses. Geopotential and pressure coordinates, or their relatives, are the most commonly

used coordinates as they facilitate the use of very refined vertical grid spacing, which can

be essential to simulate the strong exchanges between the ocean and atmosphere, rivers,

and ice. These coordinates, in particular geopotential, have been the dominant choice of

modelers focusing on global climate.

• Ocean interior: Tracer transport processes in the ocean interior predominantly occur

along neutral directions (McDougall [1987]). The transport is dominated by large scale

currents and mesoscale eddy fluctuations. Water mass properties in the interior thus tend

to be preserved over large space and time scales (e.g., basin and century scales). This
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property of the ocean interior is critical to represent in a numerical simulation of ocean

climate. An isopycnal coordinate framework is well suited to this task, whereas geopo-

tential and sigma models have problems associated with numerical truncation errors. As

discussed by Grif f ies et al. [2000b], the problem can become more egregious as the model

resolution is refined, due to the enhanced levels of eddy activity that pumps tracer vari-

ance to the grid scale. Quasi-adiabatic dissipation of this variance is difficult to maintain

in non-isopycnal models. We have more to say on this spurious mixing problem in Section

12.1.

• Solid Earth boundary: The solid Earth topography directly influences the ocean

currents. In an unstratified ocean, the balanced flow generally follows lines of constant

f/H, where f is the Coriolis parameter and H ocean depth. Additionally, there are sev-

eral regions where density driven currents (overflows) and turbulent bottom boundary

layer processes act as a strong determinant of water mass characteristics. Many such

processes are crucial for the formation of deep water properties in the World Ocean, and

for representing coastal processes in regional models. It is for this reason that terrain fol-

lowing sigma models have been developed over the past few decades, with their dominant

application focused on the coastal and estuarine problem.

As reviewed by Grif f ies et al. [2000a], the geopotential, isopycnal, and sigma mod-

els each focus on one of the above regimes. Each do quite well within the confines of

the separate regimes. It is in the overlap where problems arise. Because the ocean in-

volves all of the regimes, there remain problems applying one particular coordinate choice

for simulating the global ocean climate system. It is not clear whether these problems

are insurmoutable. Indeed, much progress continues to be made at addressing various
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weaknesses. Nonetheless, the problems have motivated some effort to develop generalized

vertical coordinates17, whereby the model algorithms determine the vertical coordinate

according to the physical flow regime (e.g., pressure near the surface, isopycnal in the

interior, and terrain following next to the solid Earth [Bleck , 2002]. We have more to say

on such approaches when discussing solution methods in Section 11.

10.2. Depth and pressure isomorphism

A natural set of vertical coordinates of use for describing Boussinesq ocean models is

based on the depth, or geopotential, vertical coordinate, since depth measures the volume

per area above a point in a fluid column. Depth based ocean models are the oldest of

those models used for studying climate, with classical references for these first generation

of ocean climate models being Bryan and Cox [1967]; Bryan [1969b, a]; Bryan et al.

[1975]; Bryan and Lewis [1979]; Cox [1984]. The work of Huang et al. [2001]; DeSzoeke

and Samelson [2002]; Marshall et al. [2004]; Losch et al. [2004] highlight an isomorphism

between depth based Boussinesq mechanics and pressure based non-Boussinesq mechanics

(see Section 11.4 for details). This isomorphism has allowed for a straightforward evolution

of depth based models to the pressure based models more commonly considered in recently

developed ocean climate models. Pressure based vertical coordinates are naturally used to

describe non-Boussinesq hydrostatic fluids, since pressure in a hydrostatic fluid measures

the mass per area above a point in a fluid column (Section 9.2).

10.3. Non-orthogonality
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The generalized vertical coordinates used in ocean modeling are not orthogonal, which

contrasts from many other applications in mathematical physics.18 Hence, it is useful to

keep in mind the following properties that may seem odd on initial encounter.

The horizontal velocity in ocean models measures motions in the horizontal plane, per-

pendicular to the local gravitational field. That is, horizontal velocity is mathematically

the same regardless the vertical coordinate, be it geopotential, isopycnal, pressure, terrain

following, etc. The key motivation for maintaining the same horizontal velocity compo-

nent is that the hydrostatic and geostrophic balances are dominant in the large-scale

ocean. Use of an alternative quasi-horizontal velocity, for example one oriented parallel

to the generalized surface, would lead to unacceptable numerical errors. Correspondingly,

the vertical direction is anti-parallel to the gravitational force in all of the coordinate

systems. We do not choose the alternative of a quasi-vertical direction oriented normal

to the surface of constant generalized vertical coordinate.

It is the method used to measure transport across the generalized vertical coordinate

surfaces which differs between the vertical coordinate choices. That is, computation of the

dia-surface velocity component detailed in Section 2.2 represents the fundamental distinc-

tion between the various coordinates. In some models, such as geopotential, pressure, and

terrain following, this transport is typically diagnosed from volume or mass conservation.

In other models, such as isopycnal layered models, this transport is prescribed based on

assumptions about the physical processes producing a flux across the layer interfaces. We

return to this key point in Section 11 when discussing solution methods.

11. Solution methods
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The purpose of this section is to introduce some of the steps needed to develop an

algorithm for solving the ocean equations. There are many steps involved, with most

given only short attention here, due to space limitations.

11.1. Finite volumes

In formulating the budgets for an ocean model, it is typical to focus on mass, tracer,

and momentum budgets for a finite domain, or control volume; namely, that of an ocean

model grid cell. The budget for a grid cell is distinct from the budget for infinitesimal mass

conserving Lagrangian fluid parcels moving with the fluid. Mass conserving fluid parcels

form the fundamental system for which the budgets of mass, tracer, momentum, and

energy are generally formulated from first principles. Grid cell budgets are then derived

from the fundamental parcel budgets. Formulating budgets over finite sized regions is

an important first step towards developing a numerical algorithm. In particular, it is an

essential step when working with a finite volume formulation [e.g., chapter 6 of Hirsch,

1988], such as with the MITgcm [Marshall et al., 1997; Adcroft et al., 1997].

The grid cells of concern for typical ocean models have vertical sides fixed in space-time,

but with the top and bottom generally moving (Figure 6). In particular, the top and

bottom either represent the ocean top, ocean bottom, or a surface of constant generalized

vertical coordinate. As before, we assume that at no place in the fluid do the top or

bottom surfaces of the grid cell become vertical. This assumption allows for a one-to-one

relation to exist between geopotential depth z and a generalized vertical coordinate s (i.e.,

the relation is invertible).

To establish the grid cell budget, we integrate the budget for mass conserving fluid

parcels over the cell volume. A first step is to take a differential relation of the form (7),
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and transform it to a finite domain relation by integrating over a region such as that for

the grid cell show in Figure 6. The following finite domain result follows using standard

vector calculus

∫

ρ
d Ψ

dt
dV = ∂t

(∫

ρΨ dV

)

+

∫

dA(n̂) n̂ · (v − v(ref)) (ρΨ). (145)

Hence, the mass weighted integral of the material time derivative of a field Ψ is given by

the time derivative of the mass weighted field integrated over the domain, plus a boundary

term that accounts for the transport across the domain boundaries, with allowance made

for moving domain boundaries. Applying this result to the parcel tracer budget (33) leads

to the finite domain tracer budget

∂t

(∫

C ρ dV

)

=

∫

S(C) ρ dV

−
∫

dA(n̂) n̂ · [(v − vref) ρC + J]. (146)

Again, the left hand side of this equation is the time tendency for tracer mass within the

finite sized grid cell region. When the tracer concentration is uniform, the SGS flux and

source vanish, in which case the tracer budget (146) reduces to the finite domain mass

budget

∂t

(∫

ρ dV

)

= −
∫

dA(n̂) n̂ · [(v − vref) ρ ]. (147)

Further work leads to similar domain statements for the momentum budget.

11.2. Reynolds averaging

The finite volume budgets provide a first step along a particular avenue towards dis-

cretizing the ocean equations. The next step explicitly considers the shape and size of

the grid cells, and approximates these geometric details as well as fields within these cells,
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given information resolved by the discrete model. This step exposes our lack of informa-

tion about the scales smaller than the grid scale, and in so doing introduces the subgrid

scale parameterization (SGS) problem.

From the finite volume perspective, the SGS parameterization problem arises when

assuming a particular form of the model’s resolved variables; e.g., they represent a mass

weighted average of the continuous variables such as

Ψmodel ≡
∫

Ψ ρ dV
∫
ρ dV

. (148)

The averaging described here is one form of a more generic Reynolds averaging proce-

dure required to specify the ocean equations appropriate for the chosen discretization.

Averaging of the form (148), or any other with more sophisticated weighting, introduces

correlation terms between nonlinear products of SGS fields. A prescription for the corre-

lations depends on the model grid and the unresolved physical processes. It also depends

on whether the average is performed at a constant point in space (Eulerian average), on

a moving surface such as an isopycnal (quasi-Lagrangian average), on a pressure surface,

etc.

Regardless of the details of the Reynolds averaging, averaging over the subgrid scales

appropriate for ocean models (e.g., scales smaller than 10km to 100km) produces corre-

lation terms that are many orders larger than the effects from molecular processes (e.g.,

molecular tracer diffusion and molecular friction). Hence, for all purposes of climate

modeling, the SGS flux JC for tracer C is just that from Reynolds averaging, as is the

momentum friction tensor τ .

Even though we can in principle formulate a Reynolds averaging procedure for the

ocean equations, there has not been a satisfying first principles closure for these equations

D R A F T April 23, 2007, 2:09pm D R A F T



GRIFFIES AND ADCROFT: FORMULATING THE EQUATIONS FOR OCEAN MODELS X - 71

relevant at the scale of global ocean models. Hence, the Reynolds averaged ocean equa-

tions are closed by introducing ad hoc steps unsatisfying both in principle and practice.

We have more to say on this point regarding the lateral friction used in ocean models in

Section 12.2.

11.3. General comments on solution algorithms

The numerical procedures required to solve the ocean equations are dependent on details

of the approximations or filters applied to the equations. For example, the non-Boussinesq

and non-hydrostatic ocean equations,

[∂t + (2Ω + ω )∧ ]v = −∇E + ρ−1 ∇ · (τ − I p) (149)

ρ,t + ∇ · (ρv) = 0 (150)

(ρ θ),t + ∇ · (ρv θ + Jθ) = ρSθ (151)

(ρ S),t + ∇ · (ρv S + JS) = ρSS (152)

ρ = ρ(θ, S, p) (153)

permit acoustics modes (Section 8.1) (recall that E = K+Φ is the total mechanical energy

per mass of a fluid parcel). An algorithm to solve these equations would significantly differ

from an algorithm developed to solve the oceanic Boussinesq equations

[∂t + (2Ω + ω )∧ ] ρo v = −ρo ∇K− ρ∇Φ + ∇ · (τ − I p) (154)

∇ · v = 0 (155)

θ,t + ∇ · (v θ + Fθ) = Sθ (156)

S,t + ∇ · (v S + FS) = SS (157)

ρ = ρ(θ, S, p) (158)
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which do not support acoustic modes. The choice of vertical coordinate also has a critical

impact on the solution algorithm. The major distinction here is between Eulerian and

Lagrangian viewpoints [Adcroft and Hallberg , 2006]. We briefly describe the procedures

resulting from these two viewpoints for hydrostatic models, which can be applied to both

the Boussinesq and non-Boussinesq momentum equations.

11.4. Sample Eulerian algorithms

We start our consideration of solution algorithms with the Boussinesq, hydrostatic equa-

tions written in geopotential (or depth) vertical coordinates. We also consider the shallow

ocean approximation (Section 9.1). The resulting Boussinesq hydrostatic primitive equa-

tions are given by

[∂t + (f ẑ + ω) ] ∧ v + ∇zE + ρ−1
o ∇z p = ρ−1

o ∇ · τ (159)

Φ,z + ρ−1p,z = 0 (160)

∇z · u + w,z = 0 (161)

θ,t + ∇z · (u θ) + (w θ),z = Sθ (162)

S,t + ∇z · (uS) + (wS),z = Ss (163)

ρ = ρ(θ, S, p). (164)

Notice that we allow for the general pressure dependence of the equation of state, according

to the discussion in Section 9.3. In these equations, ω, E and τ each assume their
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hydrostatic forms given in Section 9.2

ω = ∇ ∧ u (165)

E = u · u/2 + Φ (166)

∇ · τ = ∂z (κmodel u,z)s+ ∇ · τ horizontal strain. (167)

Equations (159)-(164) are seven equations with seven unknowns (u, v, w, p, θ, S, ρ). There

are four predictive equations: the horizontal velocity equation (159) and the potential

temperature and salinity equations (162) and (163); and there are three diagnostic equa-

tions: the hydrostatic balance (160), the Boussinesq continuity equation (161), and the

equation of state (164). Predictive equations are used to update in time (i.e., predict)

the corresponding model variable, while the remaining variables are determined by the

diagnostic relations.

The system of equations (159)-(164) can be solved using explicit-in-time algorithms.

For example, given an initial hydrographic specification of θ and S and p, we can proceed

as follows:

1. The in situ density ρ can be diagnosed from the equation of state (164), using

pressure at a lagged time step [e.g., Dewar et al., 1998; Grif f ies et al., 2001]

2. Hydrostatic pressure p can be diagnosed by vertical integration of the hydrostatic

equation (160);

3. Horizontal velocity u can be predicted using the velocity equation (159);

4. The vertical velocity component w can be diagnosed by vertically integration of the

continuity equation (161);

5. Tracers θ and S can be predicted using the tracer equations (162) and (163);
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6. Returning to step 1 repeats the cycle for a subsequent time step.

This algorithm will work using fully explicit time-integration methods. However, the

timestep will be limited by the fastest mode, which in this case is the external gravity

wave, which can exceed speeds of 200m s−1 in the deep ocean. As noted in Section 8.2,

resolving external gravity waves in a global ocean model is prohibitively expensive. An

alternative treatment of the fast external modes is discussed in Section 11.6.

The hydrostatic Boussinesq equations (159)-(164) permit four linear internal modes of

variability: 2× inertia-gravity, 1× geostrophic and 1× thermohaline mode.19 Furthermore,

the equations are written in a transparent form for developing solution algorithms, since

there is no ambiguity about the way to use each equation, and there is only one obvious

candidate for which predictive equation to use to predict a particular variable. As we

now discuss, changing the nature of an equation within the system can potentially lead

to inconsistencies. To illustrate this point, consider the non-Boussinesq and hydrostatic

primitive equations written with a general vertical coordinate s:

[∂t + (f ẑ + ω) ] ∧ v + ∇s E + ρ−1∇s p = ρ−1 ∇ · τ (168)

∂s Φ + ρ−1∂s p = 0 (169)

(ρ z,s),t + ∇s · (ρu z,s) + (ρw(s)),s = 0 (170)

(ρ z,s θ),t + ∇s · (ρu z,s θ) + (ρw(s) θ),s = ρ z,s Sθ (171)

(ρ z,s S),t + ∇s · (ρu z,s S) + (ρw(s) S),s = ρ z,s SS (172)

ρ = ρ(θ, S, p) (173)

where again w(s) = z,s ds/dt is the dia-surface velocity component introduced in Section

2.2. Equations (168)-(173) also permit four linear internal modes of variability, but the
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equations now contain five time derivatives. Hence, there are now five predictive equations

and only two diagnostic relations. Consider a situation where z,s is known or prescribed

(for instance, with geopotential vertical coordinates z,s = 1), then there are now two

possible equations that might be used to determine the in situ density ρ: either equation

(170) or equation (173). It is not immediately obvious which is the proper equation to

use. If we use the equation of state (173), then mass conservation (170) might be violated,

but if we use mass conservation, then the equation of state may not be satisfied. It is

worth noting that a judicious choice of vertical coordinate removes this ambiguity. For

example, setting s = p and noting that g ρ z,p = −1 brings equations (168)-(173) into the

form

[∂t + (f ẑ + ω)∧ ]u + ∇p E = ρ−1 ∇ · τ (174)

∂pΦ + ρ−1 = 0 (175)

∇p · u + ∂p(ṗ) = 0 (176)

θ,t + ∇p · (u θ) + (θ ṗ),p = Sθ (177)

S,t + ∇p · (uS) + (S ṗ),p = SS (178)

ρ = ρ(θ, s, p), (179)

where ṗ = dp/dt is the material time derivative of pressure. These equations are, term for

term, isomorphic to the Boussinesq hydrostatic geopotential coordinate equations (159)-

(164). This isomorphism, already mentioned in Section 10.2, has been exploited in mete-

orology for many years [e.g., Haltiner and Williams, 1980], and more recently has been

brought into use for non-Boussinesq ocean models [Huang et al., 2001; DeSzoeke and

Samelson, 2002; Marshall et al., 2004; Losch et al., 2004]. A solution procedure for the
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compressible pressure-coordinate equations (174)-(179) is identical to that for the incom-

pressible equations in height coordinates (159)-(164), except solving for Φ instead of p,

and without the need to temporally lag pressure in order to evaluate the equation of state.

Returning to the general coordinate non-Boussinesq ocean equations (168)-(173), we

note that there are two distinct approaches to solving these equations. They are distin-

guishable by their treatment of the continuity equation (170). The first method adopts an

Eulerian perspective, used in the preceding algorithms, where continuity is used to diag-

nostically determine transport across coordinate surfaces (vertically integrating equation

(170) for the dia-surface velocity component w(s)). To acheive this, the time-derivative

(ρ z,s),t must be prescribed, or more specifically, ρ z,s must be functionally related to other

dependent or independent model variables. This is the case for the terrain-following coor-

dinates commonly referred to as σ-coordinates of which a simple example is the Phillips

[1957] sigma-coordinate s = σ = (p− pa)/(pb − pa), where pb is the pressure at the solid-

Earth boundary, and pa is the pressure applied at the top of the water column. Here, the

factor ρ z,s = −(pb − pa)/g is minus the mass per area of the water column, and this two

dimensional field is predicted by the external mode equations (Section 11.6).

11.5. Sample Lagrangian algorithms

The second approach to solving the non-Boussinesq ocean equations (168)-(173) adopts

the Lagrangian perspective, common to most layer (isopycnal or stacked shallow water)

models. Here, the cross-coordinate flow, w(s), is prescribed. We focus here on isopyncal

models, in which case w(s) is set to zero in the adiabatic limit. The continuity equation

(170) is then used prognostically to predict the layer mass per area

ρ dz = ρ z,s ds. (180)
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Most isopycnal algorithms [e.g., Bleck et al., 1992] assume the potential density of each

layer to be constant in time and space. With zero dia-surface flow, the continuity equation

(170)

(ρ z,s),t + ∇s · (ρu z,s) = 0 (181)

predicts layer mass per area. A difficulty with this approach is that θ and S are predicted

independently. Hence, there is no guarantee that the diagnosed potential density ρref =

ρ(θ, S, pref) will correspond to the assumed potential density of the layer. There are

various approaches to correcting for this evolution of layer density, such as wrapping

the layer remapping together with dianeutral processes like cabelling, as proposed by

Oberhuber [1993]; McDougall and Dewar [1997]; Hallberg [2000]. We have more to say on

this point in Section 12.1.

A more general approach has been proposed [Hirt et al., 1974; Bleck , 2002] in which re-

mapping is used to re-allocate mass so as to bring the layer densities back to their targets.

This extra step is the foundation of the ALE method (Arbitrary Lagrangian-Eulerian)

which allows for the re-mapping step to re-map to any coordinate, not necessarily isopy-

cnal. ALE has become the preferred approach for general coordinate modeling because it

is quite flexible. The ALE-based procedure for solving the general-coordinate hydrostatic

non-Boussinesq equations is generally as follows:

1. Given the mass per area ρz,s ds of a layer, pressure can be found by vertically

integrating the hydrostatic equation (169).

2. Given the pressure p, potential temperature θ, salinity S, the in situ density can be

calculated from the equation of state (173).

3. The horizontal velocity u can be predicted using the velocity equation (168).
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4. The mass-thickness ρz,s ds, θ and S can be predicted assuming the generalized s

surfaces are material (ṡ = 0), by using equations (170)-(172).

5. A remapping step re-distributes mass, θ, and S so as to bring surfaces of s to the

desired position. This step introduces irreversible numerical mixing processes (Section

12.1), though it is sometimes hidden within the operators describing physical mixing

processes [Hallberg , 2000].

11.6. Solving for the external mode

The ocean external modes are significantly faster than the internal modes. Treating the

full three dimensional system explicitly with a time-step short enough to resolve external

motions would be prohibitively expensive. There are three methods that have been used

for avoiding this limitation: the rigid lid, the split-explicit method, and the time implicit

method.

Ocean model algorithms approximate the external mode via solutions to the vertically

integrated continuity and momentum equations. These equations are coordinate indepen-

dent, and take the form

∂tU
ρ + g (H + η)∇pb + F(Uρ) = S (182)

∂t pb + ∇ · Uρ = qw ρw + ∂tpa (183)

where Uρ =
∫ η

−H
ρu dz (equation (31)) was introduced when discussing mass conservation

for a vertical column. Here, we have grouped various terms into fast (F) and slow (S)

vectors. The choice of which terms are placed in the fast vector (F) is a matter of taste,

and it varies from model to model. For the present discussion, we ignore these terms, yet

note that many models include the Coriolis force in this vector, whereas others also include
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horizontal friction or bottom drag. The linear forms of equations (182) and (183) describe

plane waves with phase/group speed of cg ∼
√
gH. These are the external gravity waves

discussed in Section 8.2. The essential role of these equations is to allow the external

mode to adjust the system to imbalance of divergent mass transport. This adjustment

occurs on time-scales short compared to the baroclinic evolution of the model.

The first generation of ocean climate models, based on the algorithm of Bryan [1969a],

employed the rigid lid approximation with the oceanic Boussinesq approximation. This

approach sets the time tendency of the surface height in equation (143) to zero, and drops

the surface water fluxes. Consequently, the vertically integrated horizontal velocity is

non-divergent, thus allowing for the introduction of a streamfunction for the vertically

integrated velocity in the solution algorithm. This approach was revolutionary for its

time, as it facilitated efficient time stepping whereby fast barotropic gravity waves are

absent from the algorithm. Nonetheless, it is physically unsatisfying due to the inability to

represent tides, and through the lack of a direct water forcing [Huang , 1993]. Additionally,

it is computationally awkward, as the resulting elliptic problem is very difficult to solve

accurately in realistic ocean geometries. Hence, practitioners often halted the elliptic

solver searches after a maximum number of steps, regardless of the remaining distance to

convergence.

The split-explicit approach solves the depth averaged equations explicitly with a short

external mode time step. In contrast, the baroclinic portion of the model is time stepped

with a larger time step determined by the slower baroclinic processes. Investigations have

revealed that the split explicit methods, such as those from [e.g., Blumberg and Mellor ,

1987; Bleck and Smith, 1990; Killworth et al., 1991; Dukowicz and Smith, 1994; Grif f ies

D R A F T April 23, 2007, 2:09pm D R A F T



X - 80 GRIFFIES AND ADCROFT: FORMULATING THE EQUATIONS FOR OCEAN MODELS

et al., 2001], can be just as efficient computationally as the rigid lid, yet without sacrificing

tides, direct surface water forcing, or compromising the realism of the ocean geometry.

Hence, the rigid lid methods are largely obsolete in the more recent (e.g., post-2000)

models used for global climate.

There are many variants on the implementation details of the split-explicit approach,

with essentially two broad strategies taken. In Eulerian models, the flow is partitioned as

u = û + u, (184)

with the barotropic component determined by the following depth and mass weighted

average

u =
Uρ

η∫

−H

ρ dz

. (185)

The baraclinic component is the remainder: û = u − u. The full momentum equations

may be re-written to predict only the baroclinic component in a manner analogous to

the rigid lid approach of Bryan [1969a] [e.g., Blumberg and Mellor , 1987; Killworth et al.,

1991; Grif f ies et al., 2001]. Alternatively, the full flow may be corrected by replacing the

barotropic component with the results of the barotropic solver. In Lagrangian vertical

coordinate models, the non-linearity of the continuity equation and, in particular, the

non-linearity of the advection schemes used to guarantee positive definiteness of thick-

ness, make a decomposition of the flow according to equation (184) troublesome. The

alternative approach used is to make adjustments to either the layer transports or the

barotropic transports to make them consistent [e.g., Bleck and Smith, 1990]. Earlier mod-

els allowed these two estimates of barotropic transport to remain inconsistent, and used

weak coupling to drive one toward the other [Hallberg , 1997].
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The time implicit treatment of the external mode requires that the fast barotropic

terms, principally the pressure gradient force due to the bottom pressure and the depth-

integrated mass divergence, to be evaluated in the future part of the time-step (i.e.,

solved implicitly). The analogous depth average equations can be rearranged into a two-

dimensional elliptic equation which closely resembles the wave equation in structure. This

wave equation takes the form

[

∇ · ((H + η)∇) − Γ

∆t2

]

pn+1
b = r.h.s. (186)

where the details of the r.h.s. and Γ are dependent on the choice of time-discretization.

Notably, this elliptic operator is better conditioned than that arising in the rigid lid

approch [Dukowicz and Smith, 1994], and so convergence is more rapid. Such is fortunate,

since this elliptic equation must be solved fairly accurately in order to ensure that the

residual mass divergence does not grow during the integration of the baroclinic model.

The elliptic equation should strictly be non-linear. However, it is typically linearized by

lagging the non-linear terms in time. For deep ocean calculations, this linearization is

justifiable, but it becomes less appropriate in shallow regions. The time implicit approach

can recover the rigid lid approximation by dropping the Helmholtz term (Γ/∆t2 → 0).

The physical interpretation of this limit is that we are finding pb such as to adjust the

barotropic flow to be exactly non-divergent.

11.7. Non-hydrostatic methods

Non-hydrostatic effects are significant only for large aspect ratio flows (e.g. Kelvin-

Helmholtz instability) but can lead to systematic differences at small aspect ratios. Non-

hydrostatic global models generally are too expensive to be in routine use. However, as
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spatial resolution is refined and the sub-mesoscale is resolved, non-hydrostatic effects need

to be included. Relaxing the hydrostatic approximation in the non-Boussinesq equations

permits acoustic modes, and so most non-hydrostatic models of the ocean assume the

oceanic Boussinesq approximation. The methods of McDougall et al. [2003] might well

be able to incorporate quasi non-Boussinesq effects in non-hydrostatic models.

The non-hydrostatic algorithms in use in the ocean use derivatives of the projection

method [Chorin, 1968]. Here, the problem is posed as follows: what (non-hydrostatic)

pressure gradients are required to correct the flow to make the flow exactly non-divergent?

Summarizing the full three-dimensional momentum equations and continuity as

ρo vn+1 + ∆t∇p = ρo vn + ∆tG (187)

∇ · vn+1 = 0 (188)

where G is the vector of all explicit forces, a re-arrangement and substitution of variables

yields the three-dimensional elliptic equation

∇ · ∇p = ∇ · ( ρo

∆t
vn) + ∇ · G. (189)

The first term on the right hand side is important for implementation, otherwise a residual

divergence in the system may accumulate and lead to numerical instability. The three-

dimensional elliptic equation for pressure replaces the vertical integration for hydrostatic

pressure in the hydrostatic algorithms discussed in Section 9.2.

In the atmosphere, non-hydrostatic models do not make the Boussinesq approxima-

tion, and such models therefore permit acoustic modes. However, atmospheric acoustic

waves are slow enough to be resolvable explicitly in the horizontal, whereas an implicit

treatment in the vertical is sufficient to render a stable algorithm. Thus, non-hydrostatic
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atmospheric models are essentially hyperbolic while oceanic non-hydrostaic models are

elliptic in pressure.

12. Summary and outstanding problems

We have aimed in this chapter to present a compendium of the scientific rationale for

the equations used in physical ocean models. This rationale is independent of model

resolution, and so provides a basis for both coarse resolution global models as well as

very fine resolution regional and coastal models. Differences in applications largely reflect

in the approximations made to the equations as well as choices for subgrid scale (SGS)

parameterizations.

There remain many outstanding problems with ocean models. A large number can be al-

leviated upon refining the resolution, thus allowing the simulation to rely less on the often

ad hoc subgrid scale (SGS) parameterizations, and depending more on resolved dynami-

cal features. This reliance on enhanced resolution has a cost in computational expense.

It also is limited by numerical algorithmic integrity. Namely, for enhanced resolution

to accurately capture the dynamics, the numerical methods must respect the dynamics.

This statement is relevant at all resolutions. However, large levels of dissipation generally

used at coarse resolution can sometimes hide problems revealed only upon refining the

grid and reducing the dissipation. Our goal in this final section is to discuss two issues

which present a limitation on ocean simulations, and which do not appear to be remedied

upon refining the resolution: (A) the spurious mixing problem, (B) the specification of

horizontal friction.

12.1. The spurious mixing problem
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Direct measurements of tracer diffusivity in the ocean were pioneered with the pur-

poseful passive tracer release experiments of Ledwell et al. [1993]. These measurements

indicate that on the large scales (order hundreds of kilometers), the associated neutral to

dianeutral anisotropy in mixing can be as high as 108 in the ocean interior, with smaller

anisotropies in regions of strong dianeutral mixing such as within boundary layers or

above rough topography. Another method for determining the dianeutral diffusivity uses

the indirect approach suggested by Osborn [1980] and reviewed by Gregg [1987] and Davis

[1994]. Here, momentum dissipation at small scales is directly measured, and dianeutral

diffusivity is inferred based on a theoretical connection between buoyancy mixing and

momentum dissipation. These micro-structure techniques likewise indicate that the levels

of interior dissipation are very small, in general agreement with the direct tracer release

measurements. They each indicate that the level of interior dianeutral mixing corresponds

to a diffusivity on the order 10−5 m2 s−1, with 10 to 100 times smaller values suggested

at the equator by the results from Gregg et al. [2003]. This is a strong statement re-

garding the level to which the ocean interior respects the neutral orientation of transport.

Ocean models, especially those used for purposes of climate simulations, must respect this

anisotropy.

For a numerical simulation to respect these small levels of mixing requires a tremen-

dous level of integrity for the tracer transport algorithms. There are two main approaches

that modelers have taken in this regard. First, modelers intent on respecting this level of

mixing have tended to work with an isopycnal vertical coordinate. The advantage isopy-

cnal models have over alternative vertical coordinates is that their advective transport

operator is the sum of a two dimensional lateral operator which acts independently of
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the dia-surface transport operator, with the dia-surface transport set, ideally, according

to physical processes leading to mixing between density classes. Although working fine

for the ideal adiabatic simulations, this is not sufficient for the real ocean. Here, a non-

linear equation of state introduces new physical sources of mixing, and the independent

transport of two active tracers (temperature and salinity) requires remapping algorithms

to retain fields within pre-specified density classes. These details introduce levels of spu-

rious mixing which have yet to be systematically documented. They have generally been

considered negligible, with remapping often wrapped together with diapycnal processes

[Oberhuber , 1993; McDougall and Dewar , 1997; Hallberg , 2000], thus aliasing spurious

levels of numerical mixing into physical mixing processes.

The second approach is to focus on improving numerical transport methods. As dis-

cussed in Grif f ies et al. [2000b], the difficulties of maintaining small levels of spurious

mixing are enhanced when moving to an eddying regime, where the quasi-geostrophic

cascade pumps tracer variance towards the grid scale. Dissipating this variance is re-

quired to damp unphysical grid scale features. Dissipation methods include the addition

of an operator acting on the small scales (e.g., laplacian or biharmonic), or dissipation

inherent in the advection scheme (e.g., odd order schemes and/or flux limiters). However,

most dissipation methods remain ignorant of the constraints based on spurious dianeutral

transport. Notable exceptions include the adiabatic dissipation arising from the Laplacian

operator of Gent and McWilliams [1990]; Gent et al. [1995], which attempts to parame-

terize physical processes, or the operators of Smith and Gent [2004]; Roberts and Marshall

[1998], which are motivated from numerical considerations. For advection operators and

dissipation operators, the question remains whether they can be constructed so that in
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practice their numerical truncation errors are comparable, or ideally less, than the tiny

levels of physical mixing seen in the ocean interior. This problem remains at the forefront

of ocean modeling practice, especially as eddying simulations for global climate become

the norm.

12.2. Frictional stresses in ocean models

As discussed in Section 8.4, modelers generally must set the strength of lateral fricional

stresses to satisfy requirements of certain numerical constraints.20 For example, in the

presence of solid Earth boundaries, friction must be sufficient to maintain a nontrivial side

boundary layer. Even in the absence of boundaries, horizontal friction must be sufficient

to maintain a grid Reynolds number U ∆/νmodel on the order of unity or less, with νmodel

the model horizontal viscosity. Otherwise, the simulation may go unstable, or at best it

will produce unphysical noise-like features. This constraint on the numerical simulation

is unfortunate, since to maintain a unit grid Reynolds number requires a model viscosity

many orders of magnitude larger than the molecular viscosity relevant for the ocean. The

reason is that model grid sizes, even in mesoscale eddy permitting simulations, are much

larger than the Kolmogorov scale (≈ 10−3m) where molecular friction acts.

Given the relatively huge viscosity used in ocean models, it is inappropriate to intro-

duce Joule heating determined by the model viscosity (equation (47)) in an attempt to

close the model’s internal energy bugdet. Doing so would add a huge spurious source of

heating to the model, and thus lead to an irrelevant simulation. Hence, large-scale ocean

models should not close internal energy budgets using the model’s viscosity. Additionally,

adding Joule heating to simulations using molecular viscosity would produce a negligible

modification to the simulation. Hence, ocean models generally do not add Joule heating.
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Various methods have been engineered to employ the minimal level of horizontal fric-

tion required to meet the numerical constraints [e.g., Grif f ies and Hallberg , 2000; Large

et al., 2001; Smith and McWilliams, 2003]. Notably, modelers generally assume that the

frictional stresses are isotropic in the horizontal direction, with anisotropy only between

the horizontal and vertical stresses. However, as noted by Large et al. [2001] and Smith

and McWilliams [2003], we may choose to allow one more degree of freedom by breaking

horizontal isotropy. Doing so provides a practical avenue towards reducing the overall

dissipation, and it can have a nontrivial advantage for simulating certain features such as

the equatorial currents.

Quite generally, methods for selecting model horizontal friction are ad hoc. They fur-

thermore lead to some of the most unsatisfying elements in ocean model practice, since

details of friction can strongly influence the simulation. Unfortunately, it appears that

this sensitivity remains as resolution is refined [Chassignet and Garraffo, 2001]. One

compelling approach to resolve this problem with ad hoc friction operators is to remove

horizontal friction operators from the models altogether. In their place, one allows dis-

sipation to occur within the momentum transport operators. This approach, formally

termed Implicit Large Eddy Simulation, holds some promise. It is analogous to the trend

for handling the tracer equation in eddying simulations, whereby lateral subgrid scale

operators are removed, or rendered far subdominant to the resolved advection process.

The hope is that numerical methods for the resolved transport can be designed which are

smarter and more robust than the suite of SGS operators engineered thus far.
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Notes

1. The three dimensional velocity vector is written v = (u, w), with u = (u, v) the horizontal components and w the vertical

component.

2. This notation is standard in theoretical physics. It serves our purposes by distinguishing between a partial derivative

and a tensor label.

3. Water crossing the ocean surface is typically quite fresh, such as for precipitation or evaporation. However, rivers and

ice melt can generally contain a nonzero salinity.

4. We assume there to be no mass flux through the solid Earth boundary.

5. Note that W kg−1 = m2 s−3.

6. For spherical coordinates, r is the radial position, λ is the longitude, and φ is the latitude.

7. We consider seawater to be a binary system of fresh water and salt. The factor of 1000 accounts for the use of salinity

in parts per thousand, rather than salt concentration.

8. This meaning for isentropic ocean models is consistent with the models not including frictional heating.

9. Note that when εnh = 0, we require the buoyancy force to recover hydrostatic balance. We ignore this force here in order

to focus on the linear dynamical modes arising without buoyancy.

10.As noted by Grif f ies et al. [2000b], it is prudent to admit at least two grid points in a Munk boundary layer in order to

minimize spurious levels of mixing associated with advection truncation errors.

11.This approximation is distinct from the shallow water approximation.

12.The quasi-hydrostatic approximation discussed in Marshall et al. [1997] keeps the full Coriolis terms, but still integrates

a balance equation for pressure as in Section 11.4.

13.Some ocean models choose the Boussinesq density to be ρo = 1000 kg m−3 [e.g., Cox , 1984], which is roughly the density

of fresh water at standard conditions, whereas others [e.g., Grif f ies et al., 2004] choose ρo = 1035 kg m−3, which is

roughly the mean density of seawater in the World Ocean [page 47 of Gill , 1982].

14.See Veronis [1973] for a thorough discussion, with critique, of the Boussinesq approximation in which salinity, tempera-

ture, and potential density are materially conserved.

15.The existence of a nonzero vd in the oceanic Boussinesq approximation is analogous to the presence of a nonzero

ageostrophic flow in quasi-geostrophic models, in which the ageostrophic flow is not directly computed, but can be

diagnosed.
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16.For diagnostic purposes in a non-Boussinesq model, it is of interest to determine the local effects from column stretching

on sea level. The material time derivative in equation (144) is difficult to diagnose. Hence, we offer the alternative

expression, derived from the column integrated mass budget (30): η,t = (1/ρ) (−∇ ·Uρ + qw ρw − D ∂t ln ρ), with

ρ = (H + η)−1
R η
−H

dz ρ the vertically averaged density in a column. It is now clear that −D ∂t ln ρ represents a positive

contribution to the surface height when the vertically averaged in situ density within a column decreases.

17.So far as we know, generalized vertical coordinates are synonymous with hybrid vertical coordinates.

18.It is nonetheless notable that a similar set of generalized vertical coordinates have found use in other areas of theoretical

physics. In particular, condensed matter physicists and biophysicists studying the dynamics of fluctuating membranes

use these coordinates, where the coordinates go by the name Monge gauge. Their mathematical aspects are lucidly

described in Section 10.4 of Chaikin and Lubensky [1995].

19.See Müller and J. Willebrand [1986] for a discussion of thermohaline mode arising from the presence of two tracers,

temperature and salinity, affecting in situ density.

20.There is a notable exception to the discussion here, where Holloway [1992] argues that unresolved stresses associated

with interactions between the ocean and the solid-Earth boundary impart a net momentum to the fluid.
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Figure 1. Surfaces of constant generalized vertical coordinate living interior to the

ocean. An upward normal direction n̂ is indicated on one of the surfaces. Also shown

is the orientation of a fluid parcel’s velocity v and the velocity v(ref) of a reference point

living on the surface.
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Figure 2. Schematic of the ocean’s upper surface with a smoothed undulating surface at

z = η(x, y, t) and outward normal direction n̂η. Undulations of the surface height are on

the order of a few meters due to tidal fluctuations in the open ocean, and order 10m-20m

in certain embayments (e.g., Bay of Fundy in Nova Scotia). When imposing the weight

of sea ice onto the ocean surface, the surface height can be depressed even further, on the

order of 5m-10m, with larger values possible in some cases. It is important for simulations

to employ numerical schemes facilitating such wide surface height undulations.
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Figure 3. Schematic of a grid cell bounded at its top and bottom in general by

sloped surfaces and vertical side walls. The top and bottom surfaces can represent linear

piecewise approximations to surfaces of constant generalized vertical coordinates, with

s = s1 at the top surface and s = s2 at the bottom surface. They could also represent

the ocean surface (for the top face) or the ocean bottom (for the bottom face). The

arrows represent the pressure contact forces which act in a compressive manner along

the boundaries of the grid cell and in a direction normal to the boundaries. These forces

arise from contact between the shown fluid volume and adjacent regions. Due to Newton’s

Third Law, the pressure acting on an arbitrary fluid parcel A due to contact with a parcel

B is equal and opposite to the pressure acting on parcel B due to contact with parcel

A. If coded according to finite volume budgets, as in Lin [1997], this law extends to the

pressure forces acting between grid cells in an ocean model.
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Figure 4. (A) Scaling for the maximum speed U seen in global numerical models as

a function of spatial resolution. (B) The harmonic viscosity required to maintain a grid

Reynolds number of 1, or that required to ensure the Munk boundary layer is resolved.

(C) As for panel (B), but for a biharmonic viscosity. The spatial resolution is assumed to

be isotropic and relatively uniform. This assumption is not generally the case for many

global model grids.
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Figure 5. Using the scaling for U and viscosities shown in Figure 4, the maximum

∆t allowed by each process: Coriolis term, 1/f ; advection ∆/U ; internal gravity waves

∆/cg; viscosity ∆2/A2 or ∆4/A4. Note that the time-scales of processes have arbitrar-

ily been equalized at the grid-scale since we have neglected the details of the numerial

discretizations. The curves shown can not be compared to each other since they should

each be scaled by appropriate factors to reflect the numerical details. See text for a full

explanation.
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Process
Time
scale ∆ < Lb ∆ > Lb

advection, U U ∼ Ub U ∼ Ub Lb/∆

∆tumax ∝ ∆
U

∆
Ub

∆2

Ub Lb

gravity wave, cg

∆t
cg
max ∝ ∆

cg

∆
cg

harmonic, A2 ∝ ∆Ub LbUb β∆3

∆t
A2

max ∝ ∆2

A2

∆
Ub

∆2

Ub Lb

1
β∆

biharmonic, A4 ∝ ∆3 Ub Lb∆
2Ub β∆5

∆t
A4

max ∝ ∆4

A4

∆
Ub

∆2

Ub Lb

1
β∆

Table 1. Table of scaling relations for maximum time-step permitted by each process.

U is the flow speed realized in the model, Ub is maximum oceanic flow speed observed in

boundary currents, cg is the speed of the gravest internal gravity waves, ∆ is the smallest

grid spacing, Lb is a boundary layer scale, β is the planetary vorticity gradient at the

Equator and A2 and A4 are the Laplacian and biharmonic viscosities, respectively.

D R A F T April 23, 2007, 2:09pm D R A F T



X - 106 GRIFFIES AND ADCROFT: FORMULATING THE EQUATIONS FOR OCEAN MODELS

Grid cell k x,y

z

s=s
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Figure 6. Schematic of an ocean grid cell labeled by the vertical integer k. Its sides are

vertical and oriented according to x̂ and ŷ, and its horizontal position is fixed in time.

The top and bottom surfaces are determined by constant generalized vertical coordinates

sk−1 and sk, respectively. Furthermore, the top and bottom are assumed to always have

an outward normal with a nonzero component in the vertical direction ẑ. That is, the top

and bottom are never vertical. We take the convention that the discrete vertical label k

increases as moving downward in the column, and grid cell k is bounded at its upper face

by s = sk−1 and lower face by s = sk.
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